Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161973810> ?p ?o ?g. }
- W2161973810 abstract "Considering the future coming more stringent emission limits, the working condition of the combustors will be more rigorous, and the problems will be more serious. To meet this high industry demand, a deeper and better understanding of the physics of the turbulent combustion process is wanted. In doing this, more accurate computational studies are necessary. Eventhough, direct numerical simulations (DNS) of Navier-Stokes equations can predict turbulence without models; these types of simulations are restricted to very simple geometries. On the otherhand the large eddy simulations (LES) are now viewed as a promising tool to address turbulent combustion flows where classical Reynolds-averaging numerical simulations (RANS) approaches have proved to lack precision or where the intrinsically unsteady nature of the flow makes RANS clearly inadequate. In this thesis large eddy simulation techniques are considered. This work consists of two parts. First, this thesis studies the subgrid-scale (SGS) modelling for large eddy simulations. The aims are to gain deeper understanding of the sensitiveness of the SGS modelling and predict the simple and better model for the further studies. For this purpose, effect of different filter width formulas on Smagorinsky model, robustness of the dynamic model, behaviour of different dynamic procedures, behaviour of mixed models and one equation models are studied. Nevertheless all these models are not capable of predicting the anisotropic nature of the flow phenomena. In this work anisotropic one equation model based on the subgrid scale (SGS) kinetic energy is developed. This model considers an anisotropic eddy viscosity formulation. All these models are tested by considering a turbulent channel flow. Finally some models are tested on rotating channel flow. It is shown that the proposed model achieves a good agreement with the experimental data and significantly outperforms isotropic models. Nevertheless Lagrangian dynamic model also predicts good flow phenomena. The Second part consists of the large eddy simulation of turbulent premixed combustion processes by considering the flame surface density and artificial thickened flame model. For this purpose a simple technique for the density coupling is proposed for the extension of the incompressible solver to variable solver. In this technique, first divergence of the velocity is calculated and then density is updated by using this value. Divergence of the velocity is also used for the treatment of convective outlet boundary condition. Handling of the flame wall interaction is presented. Effect of different flame wrinkling models is studied. For simulations bluff-body stabilized flame is considered. Comparisons between the experimental and numerical results have showed that the numerical method implemented is able to provide promising agreement." @default.
- W2161973810 created "2016-06-24" @default.
- W2161973810 creator A5049372220 @default.
- W2161973810 date "2007-02-26" @default.
- W2161973810 modified "2023-09-27" @default.
- W2161973810 title "Study of the Performance of different Subgrid-Scale Models and Large Eddy Simulation of Premixed Combustion" @default.
- W2161973810 cites W1040224428 @default.
- W2161973810 cites W1493000204 @default.
- W2161973810 cites W1501132267 @default.
- W2161973810 cites W1559781303 @default.
- W2161973810 cites W1595241212 @default.
- W2161973810 cites W1613639798 @default.
- W2161973810 cites W1926519074 @default.
- W2161973810 cites W1965071732 @default.
- W2161973810 cites W1965245227 @default.
- W2161973810 cites W1966617633 @default.
- W2161973810 cites W1979671468 @default.
- W2161973810 cites W1983801295 @default.
- W2161973810 cites W1984452672 @default.
- W2161973810 cites W1984894613 @default.
- W2161973810 cites W1998615809 @default.
- W2161973810 cites W2000775551 @default.
- W2161973810 cites W2008081559 @default.
- W2161973810 cites W2008179361 @default.
- W2161973810 cites W2010173499 @default.
- W2161973810 cites W2011698236 @default.
- W2161973810 cites W2014722791 @default.
- W2161973810 cites W2015781005 @default.
- W2161973810 cites W2016866550 @default.
- W2161973810 cites W2017852458 @default.
- W2161973810 cites W2022105967 @default.
- W2161973810 cites W2022274480 @default.
- W2161973810 cites W2027491774 @default.
- W2161973810 cites W2030546928 @default.
- W2161973810 cites W2033329519 @default.
- W2161973810 cites W2036752995 @default.
- W2161973810 cites W2038036606 @default.
- W2161973810 cites W2038785086 @default.
- W2161973810 cites W2043913694 @default.
- W2161973810 cites W2044249553 @default.
- W2161973810 cites W2045244586 @default.
- W2161973810 cites W2046255748 @default.
- W2161973810 cites W2046568995 @default.
- W2161973810 cites W2047710483 @default.
- W2161973810 cites W2048438578 @default.
- W2161973810 cites W2055059354 @default.
- W2161973810 cites W2061499594 @default.
- W2161973810 cites W2062208263 @default.
- W2161973810 cites W2062712788 @default.
- W2161973810 cites W2062787428 @default.
- W2161973810 cites W2063157174 @default.
- W2161973810 cites W2063913493 @default.
- W2161973810 cites W2064459471 @default.
- W2161973810 cites W2074447412 @default.
- W2161973810 cites W2084235496 @default.
- W2161973810 cites W2086926663 @default.
- W2161973810 cites W2089152874 @default.
- W2161973810 cites W2090215188 @default.
- W2161973810 cites W2091345137 @default.
- W2161973810 cites W2092609514 @default.
- W2161973810 cites W2104272324 @default.
- W2161973810 cites W2112268195 @default.
- W2161973810 cites W2131537960 @default.
- W2161973810 cites W2133732254 @default.
- W2161973810 cites W2149337794 @default.
- W2161973810 cites W2153555417 @default.
- W2161973810 cites W2160596400 @default.
- W2161973810 cites W2168795429 @default.
- W2161973810 cites W2171452164 @default.
- W2161973810 cites W2481714479 @default.
- W2161973810 cites W2972814204 @default.
- W2161973810 cites W3128359972 @default.
- W2161973810 cites W3212303547 @default.
- W2161973810 cites W753036102 @default.
- W2161973810 cites W835284673 @default.
- W2161973810 cites W99877229 @default.
- W2161973810 cites W3035600252 @default.
- W2161973810 doi "https://doi.org/10.0253/tuprints-00000789" @default.
- W2161973810 hasPublicationYear "2007" @default.
- W2161973810 type Work @default.
- W2161973810 sameAs 2161973810 @default.
- W2161973810 citedByCount "1" @default.
- W2161973810 crossrefType "dissertation" @default.
- W2161973810 hasAuthorship W2161973810A5049372220 @default.
- W2161973810 hasConcept C121332964 @default.
- W2161973810 hasConcept C121448008 @default.
- W2161973810 hasConcept C121864883 @default.
- W2161973810 hasConcept C1633027 @default.
- W2161973810 hasConcept C182748727 @default.
- W2161973810 hasConcept C18533594 @default.
- W2161973810 hasConcept C196558001 @default.
- W2161973810 hasConcept C204573209 @default.
- W2161973810 hasConcept C32526432 @default.
- W2161973810 hasConcept C57879066 @default.
- W2161973810 hasConceptScore W2161973810C121332964 @default.
- W2161973810 hasConceptScore W2161973810C121448008 @default.
- W2161973810 hasConceptScore W2161973810C121864883 @default.
- W2161973810 hasConceptScore W2161973810C1633027 @default.
- W2161973810 hasConceptScore W2161973810C182748727 @default.
- W2161973810 hasConceptScore W2161973810C18533594 @default.