Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161987921> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2161987921 abstract "The advent of fuzzy logic controllers has inspired the allocation of new resources for the possible realization of more efficient methods of control. In comparison with traditional controller design methods requiring mathematical models of the plants, one key advantage of fuzzy controller design lies in its model-free approach. Conventionally, the selection of fuzzy if-then rules often relies heavily upon the substantial amounts of heuristic observation to express the strategy's proper knowledge. It is very difficult for human experts to examine all the input-output data from a complex system, and then to design a number of proper rules for the fuzzy logic controllers. Many design approaches for automatic fuzzy rules generation have been developed in an effort to tackle this problem (Lin & Lee, 1996). The neural learning method is one of them. In (Miller et al., 1990), several neural learning methods including supervised and reinforcement based control configurations are studied. For many control problems, the training data are usually difficult and expensive, if not impossible, to obtain. Besides, many control problems require selecting control actions whose consequences emerge over uncertain periods for which training data are not readily available. In reinforcement learning, agents learn from signals that provide some measure of performance which may be delivered after a sequence of decisions being made. Hence, when the above mentioned control problems occur, reinforcement learning is more appropriate than supervised learning." @default.
- W2161987921 created "2016-06-24" @default.
- W2161987921 creator A5021101384 @default.
- W2161987921 creator A5028317740 @default.
- W2161987921 date "2008-11-01" @default.
- W2161987921 modified "2023-09-23" @default.
- W2161987921 title "Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design" @default.
- W2161987921 cites W1523363758 @default.
- W2161987921 cites W1566954139 @default.
- W2161987921 cites W1576064560 @default.
- W2161987921 cites W1597717349 @default.
- W2161987921 cites W1639032689 @default.
- W2161987921 cites W177891611 @default.
- W2161987921 cites W1953706753 @default.
- W2161987921 cites W1983597169 @default.
- W2161987921 cites W1995663008 @default.
- W2161987921 cites W2039814708 @default.
- W2161987921 cites W2044320538 @default.
- W2161987921 cites W2049287437 @default.
- W2161987921 cites W2064999526 @default.
- W2161987921 cites W2097419069 @default.
- W2161987921 cites W2097460058 @default.
- W2161987921 cites W2100654013 @default.
- W2161987921 cites W2102295697 @default.
- W2161987921 cites W2103537992 @default.
- W2161987921 cites W2104727184 @default.
- W2161987921 cites W2111923825 @default.
- W2161987921 cites W2117043380 @default.
- W2161987921 cites W2127088021 @default.
- W2161987921 cites W2133267871 @default.
- W2161987921 cites W2139877293 @default.
- W2161987921 cites W2140208274 @default.
- W2161987921 cites W2141630781 @default.
- W2161987921 cites W2142592520 @default.
- W2161987921 cites W2145669524 @default.
- W2161987921 cites W2155293593 @default.
- W2161987921 cites W2161688909 @default.
- W2161987921 cites W2162813238 @default.
- W2161987921 cites W2163014207 @default.
- W2161987921 cites W2164759297 @default.
- W2161987921 cites W2170937782 @default.
- W2161987921 cites W2307402446 @default.
- W2161987921 cites W2904250082 @default.
- W2161987921 cites W2911283634 @default.
- W2161987921 cites W2912046818 @default.
- W2161987921 cites W2914656440 @default.
- W2161987921 doi "https://doi.org/10.5772/6120" @default.
- W2161987921 hasPublicationYear "2008" @default.
- W2161987921 type Work @default.
- W2161987921 sameAs 2161987921 @default.
- W2161987921 citedByCount "1" @default.
- W2161987921 crossrefType "book-chapter" @default.
- W2161987921 hasAuthorship W2161987921A5021101384 @default.
- W2161987921 hasAuthorship W2161987921A5028317740 @default.
- W2161987921 hasBestOaLocation W21619879211 @default.
- W2161987921 hasConcept C154945302 @default.
- W2161987921 hasConcept C41008148 @default.
- W2161987921 hasConcept C58166 @default.
- W2161987921 hasConceptScore W2161987921C154945302 @default.
- W2161987921 hasConceptScore W2161987921C41008148 @default.
- W2161987921 hasConceptScore W2161987921C58166 @default.
- W2161987921 hasLocation W21619879211 @default.
- W2161987921 hasLocation W21619879212 @default.
- W2161987921 hasOpenAccess W2161987921 @default.
- W2161987921 hasPrimaryLocation W21619879211 @default.
- W2161987921 hasRelatedWork W2096946506 @default.
- W2161987921 hasRelatedWork W2350741829 @default.
- W2161987921 hasRelatedWork W2358668433 @default.
- W2161987921 hasRelatedWork W2376932109 @default.
- W2161987921 hasRelatedWork W2382290278 @default.
- W2161987921 hasRelatedWork W2390279801 @default.
- W2161987921 hasRelatedWork W2738546080 @default.
- W2161987921 hasRelatedWork W2748952813 @default.
- W2161987921 hasRelatedWork W2899084033 @default.
- W2161987921 hasRelatedWork W3107474891 @default.
- W2161987921 isParatext "false" @default.
- W2161987921 isRetracted "false" @default.
- W2161987921 magId "2161987921" @default.
- W2161987921 workType "book-chapter" @default.