Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162023482> ?p ?o ?g. }
- W2162023482 abstract "Abstract Background Data generated using 'omics' technologies are characterized by high dimensionality, where the number of features measured per subject vastly exceeds the number of subjects in the study. In this paper, we consider issues relevant in the design of biomedical studies in which the goal is the discovery of a subset of features and an associated algorithm that can predict a binary outcome, such as disease status. We compare the performance of four commonly used classifiers (K-Nearest Neighbors, Prediction Analysis for Microarrays, Random Forests and Support Vector Machines) in high-dimensionality data settings. We evaluate the effects of varying levels of signal-to-noise ratio in the dataset, imbalance in class distribution and choice of metric for quantifying performance of the classifier. To guide study design, we present a summary of the key characteristics of 'omics' data profiled in several human or animal model experiments utilizing high-content mass spectrometry and multiplexed immunoassay based techniques. Results The analysis of data from seven 'omics' studies revealed that the average magnitude of effect size observed in human studies was markedly lower when compared to that in animal studies. The data measured in human studies were characterized by higher biological variation and the presence of outliers. The results from simulation studies indicated that the classifier Prediction Analysis for Microarrays (PAM) had the highest power when the class conditional feature distributions were Gaussian and outcome distributions were balanced. Random Forests was optimal when feature distributions were skewed and when class distributions were unbalanced. We provide a free open-source R statistical software library ( MVpower ) that implements the simulation strategy proposed in this paper. Conclusion No single classifier had optimal performance under all settings. Simulation studies provide useful guidance for the design of biomedical studies involving high-dimensionality data." @default.
- W2162023482 created "2016-06-24" @default.
- W2162023482 creator A5006677043 @default.
- W2162023482 creator A5007242886 @default.
- W2162023482 creator A5050976625 @default.
- W2162023482 creator A5067992188 @default.
- W2162023482 date "2010-09-03" @default.
- W2162023482 modified "2023-10-09" @default.
- W2162023482 title "Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms" @default.
- W2162023482 cites W1965158220 @default.
- W2162023482 cites W1973429805 @default.
- W2162023482 cites W1985062374 @default.
- W2162023482 cites W2011333145 @default.
- W2162023482 cites W2025938145 @default.
- W2162023482 cites W2037199469 @default.
- W2162023482 cites W2059238813 @default.
- W2162023482 cites W2062551369 @default.
- W2162023482 cites W2077922582 @default.
- W2162023482 cites W2097554668 @default.
- W2162023482 cites W2099832063 @default.
- W2162023482 cites W2105381419 @default.
- W2162023482 cites W2112071941 @default.
- W2162023482 cites W2122111042 @default.
- W2162023482 cites W2126421206 @default.
- W2162023482 cites W2128909276 @default.
- W2162023482 cites W2129571249 @default.
- W2162023482 cites W2132804140 @default.
- W2162023482 cites W2138330140 @default.
- W2162023482 cites W2138550913 @default.
- W2162023482 cites W2140353888 @default.
- W2162023482 cites W2145229405 @default.
- W2162023482 cites W2155834859 @default.
- W2162023482 cites W2159741108 @default.
- W2162023482 cites W2911964244 @default.
- W2162023482 doi "https://doi.org/10.1186/1471-2105-11-447" @default.
- W2162023482 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2942858" @default.
- W2162023482 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20815881" @default.
- W2162023482 hasPublicationYear "2010" @default.
- W2162023482 type Work @default.
- W2162023482 sameAs 2162023482 @default.
- W2162023482 citedByCount "65" @default.
- W2162023482 countsByYear W21620234822012 @default.
- W2162023482 countsByYear W21620234822013 @default.
- W2162023482 countsByYear W21620234822014 @default.
- W2162023482 countsByYear W21620234822015 @default.
- W2162023482 countsByYear W21620234822016 @default.
- W2162023482 countsByYear W21620234822017 @default.
- W2162023482 countsByYear W21620234822018 @default.
- W2162023482 countsByYear W21620234822019 @default.
- W2162023482 countsByYear W21620234822020 @default.
- W2162023482 countsByYear W21620234822021 @default.
- W2162023482 countsByYear W21620234822022 @default.
- W2162023482 countsByYear W21620234822023 @default.
- W2162023482 crossrefType "journal-article" @default.
- W2162023482 hasAuthorship W2162023482A5006677043 @default.
- W2162023482 hasAuthorship W2162023482A5007242886 @default.
- W2162023482 hasAuthorship W2162023482A5050976625 @default.
- W2162023482 hasAuthorship W2162023482A5067992188 @default.
- W2162023482 hasBestOaLocation W21620234821 @default.
- W2162023482 hasConcept C105795698 @default.
- W2162023482 hasConcept C111030470 @default.
- W2162023482 hasConcept C119857082 @default.
- W2162023482 hasConcept C12267149 @default.
- W2162023482 hasConcept C124101348 @default.
- W2162023482 hasConcept C129848803 @default.
- W2162023482 hasConcept C148483581 @default.
- W2162023482 hasConcept C153180895 @default.
- W2162023482 hasConcept C154945302 @default.
- W2162023482 hasConcept C169258074 @default.
- W2162023482 hasConcept C33923547 @default.
- W2162023482 hasConcept C41008148 @default.
- W2162023482 hasConcept C70518039 @default.
- W2162023482 hasConcept C79337645 @default.
- W2162023482 hasConcept C95623464 @default.
- W2162023482 hasConcept C96608239 @default.
- W2162023482 hasConceptScore W2162023482C105795698 @default.
- W2162023482 hasConceptScore W2162023482C111030470 @default.
- W2162023482 hasConceptScore W2162023482C119857082 @default.
- W2162023482 hasConceptScore W2162023482C12267149 @default.
- W2162023482 hasConceptScore W2162023482C124101348 @default.
- W2162023482 hasConceptScore W2162023482C129848803 @default.
- W2162023482 hasConceptScore W2162023482C148483581 @default.
- W2162023482 hasConceptScore W2162023482C153180895 @default.
- W2162023482 hasConceptScore W2162023482C154945302 @default.
- W2162023482 hasConceptScore W2162023482C169258074 @default.
- W2162023482 hasConceptScore W2162023482C33923547 @default.
- W2162023482 hasConceptScore W2162023482C41008148 @default.
- W2162023482 hasConceptScore W2162023482C70518039 @default.
- W2162023482 hasConceptScore W2162023482C79337645 @default.
- W2162023482 hasConceptScore W2162023482C95623464 @default.
- W2162023482 hasConceptScore W2162023482C96608239 @default.
- W2162023482 hasIssue "1" @default.
- W2162023482 hasLocation W21620234821 @default.
- W2162023482 hasLocation W21620234822 @default.
- W2162023482 hasLocation W21620234823 @default.
- W2162023482 hasLocation W21620234824 @default.
- W2162023482 hasLocation W21620234825 @default.
- W2162023482 hasLocation W21620234826 @default.
- W2162023482 hasOpenAccess W2162023482 @default.
- W2162023482 hasPrimaryLocation W21620234821 @default.