Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162220273> ?p ?o ?g. }
- W2162220273 endingPage "779" @default.
- W2162220273 startingPage "775" @default.
- W2162220273 abstract "With many genomes sequenced, a pressing challenge in biology is predicting the function of the proteins that the genes encode. When proteins are unrelated to others of known activity, bioinformatics inference for function becomes problematic. It would thus be useful to interrogate protein structures for function directly. Here, we predict the function of an enzyme of unknown activity, Tm0936 from Thermotoga maritima, by docking high-energy intermediate forms of thousands of candidate metabolites. The docking hit list was dominated by adenine analogues, which appeared to undergo C6-deamination. Four of these, including 5-methylthioadenosine and S-adenosylhomocysteine (SAH), were tested as substrates, and three had substantial catalytic rate constants (105 M-1s-1). The X-ray crystal structure of the complex between Tm0936 and the product resulting from the deamination of SAH, S-inosylhomocysteine, was determined, and it corresponded closely to the predicted structure. The deaminated products can be further metabolized by T. maritima in a previously uncharacterized SAH degradation pathway. Structure-based docking with high-energy forms of potential substrates may be a useful tool to annotate enzymes for function. Though it is often possible to infer the function of a newly discovered protein by comparing its sequence to those of other characterized proteins, it can be extremely difficult to predict the function of an enzyme that is unrelated to other studied proteins. Hermann et al. now show that it is possible to use a computational approach to predict the function of an enzyme of unknown activity. They 'docked' high-energy intermediate forms of thousands of candidate metabolites to the X-ray crystal structure of Tm0936, a member of the amidohydrolase superfamily. These experiments predicted that the enzyme would deaminate 5-methylthioadenosine and S-adenosylhomocysteine; this was borne out biochemically, and the X-ray crystal structure of one of the products bound to Tm0936 corresponded closely to the predicted structure. These results suggest that structure-based docking using high-energy forms of potential substrates may be a useful tool to annotate enzymes for function. A computational approach is used to predict the function of an uncharacterized enzyme by docking high-energy intermediate forms of candidate metabolites into its purported binding site. The docking experiments predicted that the enzyme would be able to deaminate intermediates of 5-methylthioadenosine and S-adenosylhomocysteine, a prediction confirmed by biochemical experiments and examination of the X-ray crystal structure of the protein." @default.
- W2162220273 created "2016-06-24" @default.
- W2162220273 creator A5002277619 @default.
- W2162220273 creator A5006013523 @default.
- W2162220273 creator A5009419179 @default.
- W2162220273 creator A5061121659 @default.
- W2162220273 creator A5066381646 @default.
- W2162220273 creator A5071591356 @default.
- W2162220273 creator A5085035303 @default.
- W2162220273 date "2007-07-01" @default.
- W2162220273 modified "2023-10-16" @default.
- W2162220273 title "Structure-based activity prediction for an enzyme of unknown function" @default.
- W2162220273 cites W1505791519 @default.
- W2162220273 cites W1539796472 @default.
- W2162220273 cites W1967383104 @default.
- W2162220273 cites W1972607828 @default.
- W2162220273 cites W1979234818 @default.
- W2162220273 cites W1979725415 @default.
- W2162220273 cites W1980285986 @default.
- W2162220273 cites W1981376176 @default.
- W2162220273 cites W1985203726 @default.
- W2162220273 cites W1989773022 @default.
- W2162220273 cites W1994276053 @default.
- W2162220273 cites W1995017064 @default.
- W2162220273 cites W1995413875 @default.
- W2162220273 cites W2015461838 @default.
- W2162220273 cites W2016765195 @default.
- W2162220273 cites W2032838501 @default.
- W2162220273 cites W2034966065 @default.
- W2162220273 cites W2040225778 @default.
- W2162220273 cites W2050273205 @default.
- W2162220273 cites W2050802295 @default.
- W2162220273 cites W2054338762 @default.
- W2162220273 cites W2065960781 @default.
- W2162220273 cites W2067455153 @default.
- W2162220273 cites W2074978477 @default.
- W2162220273 cites W2078565449 @default.
- W2162220273 cites W2087512675 @default.
- W2162220273 cites W2093084945 @default.
- W2162220273 cites W2098223336 @default.
- W2162220273 cites W2099900074 @default.
- W2162220273 cites W2105900919 @default.
- W2162220273 cites W2106550419 @default.
- W2162220273 cites W2109817765 @default.
- W2162220273 cites W2117514600 @default.
- W2162220273 cites W2120993382 @default.
- W2162220273 cites W2124410686 @default.
- W2162220273 cites W2124809796 @default.
- W2162220273 cites W2159482845 @default.
- W2162220273 cites W2160216877 @default.
- W2162220273 cites W2171234651 @default.
- W2162220273 cites W2176516200 @default.
- W2162220273 cites W2226425375 @default.
- W2162220273 cites W2969273703 @default.
- W2162220273 cites W4294216483 @default.
- W2162220273 cites W4302036178 @default.
- W2162220273 doi "https://doi.org/10.1038/nature05981" @default.
- W2162220273 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2254328" @default.
- W2162220273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17603473" @default.
- W2162220273 hasPublicationYear "2007" @default.
- W2162220273 type Work @default.
- W2162220273 sameAs 2162220273 @default.
- W2162220273 citedByCount "238" @default.
- W2162220273 countsByYear W21622202732012 @default.
- W2162220273 countsByYear W21622202732013 @default.
- W2162220273 countsByYear W21622202732014 @default.
- W2162220273 countsByYear W21622202732015 @default.
- W2162220273 countsByYear W21622202732016 @default.
- W2162220273 countsByYear W21622202732017 @default.
- W2162220273 countsByYear W21622202732018 @default.
- W2162220273 countsByYear W21622202732019 @default.
- W2162220273 countsByYear W21622202732020 @default.
- W2162220273 countsByYear W21622202732021 @default.
- W2162220273 countsByYear W21622202732022 @default.
- W2162220273 countsByYear W21622202732023 @default.
- W2162220273 crossrefType "journal-article" @default.
- W2162220273 hasAuthorship W2162220273A5002277619 @default.
- W2162220273 hasAuthorship W2162220273A5006013523 @default.
- W2162220273 hasAuthorship W2162220273A5009419179 @default.
- W2162220273 hasAuthorship W2162220273A5061121659 @default.
- W2162220273 hasAuthorship W2162220273A5066381646 @default.
- W2162220273 hasAuthorship W2162220273A5071591356 @default.
- W2162220273 hasAuthorship W2162220273A5085035303 @default.
- W2162220273 hasBestOaLocation W21622202732 @default.
- W2162220273 hasConcept C104317684 @default.
- W2162220273 hasConcept C14036430 @default.
- W2162220273 hasConcept C145782189 @default.
- W2162220273 hasConcept C159110408 @default.
- W2162220273 hasConcept C181199279 @default.
- W2162220273 hasConcept C185592680 @default.
- W2162220273 hasConcept C192772702 @default.
- W2162220273 hasConcept C2777002520 @default.
- W2162220273 hasConcept C41685203 @default.
- W2162220273 hasConcept C47701112 @default.
- W2162220273 hasConcept C54355233 @default.
- W2162220273 hasConcept C547475151 @default.
- W2162220273 hasConcept C55493867 @default.
- W2162220273 hasConcept C70721500 @default.