Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162267805> ?p ?o ?g. }
- W2162267805 endingPage "141" @default.
- W2162267805 startingPage "129" @default.
- W2162267805 abstract "Current regional aboveground biomass estimation techniques, such as those that require extensive fieldwork or airborne light detection and ranging (lidar) data for validation, are time and cost intensive. The use of freely available satellite-based data for carbon stock estimation mitigates both the cost and the spatial limitations of field-based techniques. Spaceborne lidar data have been demonstrated as useful for aboveground biomass (AGBM) estimation over a wide range of biomass values and forest types. However, the application of these data is limited because of their spatially discrete nature. Spaceborne multispectral sensors have been used extensively to estimate AGBM, but these methods have been demonstrated as inappropriate for forest structure characterization in high-biomass mature forests. This study uses an integration of ICESat Geospatial Laser Altimeter System (GLAS) lidar and Landsat data to develop methods to estimate AGBM in an area of south-central British Columbia, Canada. We compare estimates with a reliable AGBM map of the area derived from high-resolution airborne lidar data to assess the accuracy of satellite-based AGBM estimates. Further, we use the airborne lidar dataset in combination with forest inventory data to explore the relationship between model error and canopy height, AGBM, stand age, canopy rugosity, mean diameter at breast height (DBH), canopy cover, terrain slope, and dominant species type. GLAS AGBM models were shown to reliably estimate AGBM (R2 = 0.77) over a range of biomass conditions. A partial least squares AGBM model using Landsat input data to estimate AGBM (derived from GLAS) had an R2 of 0.60 and was found to underestimate AGBM by an average of 26 Mg/ha per pixel when applied to areas outside of the GLAS transect. This study demonstrates that Landsat and GLAS data integration are most useful for forests with less than 120 Mg/ha of AGBM, less than 60 years of age, and less than 60% canopy cover. These techniques have high associated error when applied to areas with greater than 200 Mg/ha of AGBM." @default.
- W2162267805 created "2016-06-24" @default.
- W2162267805 creator A5047385303 @default.
- W2162267805 creator A5051219165 @default.
- W2162267805 creator A5085572546 @default.
- W2162267805 date "2010-01-01" @default.
- W2162267805 modified "2023-10-14" @default.
- W2162267805 title "Integration of GLAS and Landsat TM data for aboveground biomass estimation" @default.
- W2162267805 cites W1974234045 @default.
- W2162267805 cites W1980403882 @default.
- W2162267805 cites W1998779060 @default.
- W2162267805 cites W2008415990 @default.
- W2162267805 cites W2013203541 @default.
- W2162267805 cites W2018140562 @default.
- W2162267805 cites W2035325819 @default.
- W2162267805 cites W2068388290 @default.
- W2162267805 cites W2083468770 @default.
- W2162267805 cites W2089464686 @default.
- W2162267805 cites W2109191549 @default.
- W2162267805 cites W2114527611 @default.
- W2162267805 cites W2123769680 @default.
- W2162267805 cites W2129117679 @default.
- W2162267805 cites W2145167036 @default.
- W2162267805 cites W2152634225 @default.
- W2162267805 cites W2153785132 @default.
- W2162267805 cites W2157929592 @default.
- W2162267805 cites W2160203024 @default.
- W2162267805 cites W2164629816 @default.
- W2162267805 cites W2168525280 @default.
- W2162267805 doi "https://doi.org/10.5589/m10-037" @default.
- W2162267805 hasPublicationYear "2010" @default.
- W2162267805 type Work @default.
- W2162267805 sameAs 2162267805 @default.
- W2162267805 citedByCount "55" @default.
- W2162267805 countsByYear W21622678052012 @default.
- W2162267805 countsByYear W21622678052013 @default.
- W2162267805 countsByYear W21622678052014 @default.
- W2162267805 countsByYear W21622678052015 @default.
- W2162267805 countsByYear W21622678052016 @default.
- W2162267805 countsByYear W21622678052017 @default.
- W2162267805 countsByYear W21622678052018 @default.
- W2162267805 countsByYear W21622678052019 @default.
- W2162267805 countsByYear W21622678052020 @default.
- W2162267805 countsByYear W21622678052021 @default.
- W2162267805 countsByYear W21622678052022 @default.
- W2162267805 countsByYear W21622678052023 @default.
- W2162267805 crossrefType "journal-article" @default.
- W2162267805 hasAuthorship W2162267805A5047385303 @default.
- W2162267805 hasAuthorship W2162267805A5051219165 @default.
- W2162267805 hasAuthorship W2162267805A5085572546 @default.
- W2162267805 hasBestOaLocation W21622678052 @default.
- W2162267805 hasConcept C101000010 @default.
- W2162267805 hasConcept C111368507 @default.
- W2162267805 hasConcept C115540264 @default.
- W2162267805 hasConcept C127313418 @default.
- W2162267805 hasConcept C127413603 @default.
- W2162267805 hasConcept C146978453 @default.
- W2162267805 hasConcept C147103442 @default.
- W2162267805 hasConcept C159985019 @default.
- W2162267805 hasConcept C161840515 @default.
- W2162267805 hasConcept C166957645 @default.
- W2162267805 hasConcept C173163844 @default.
- W2162267805 hasConcept C17534553 @default.
- W2162267805 hasConcept C192562407 @default.
- W2162267805 hasConcept C19269812 @default.
- W2162267805 hasConcept C204323151 @default.
- W2162267805 hasConcept C205649164 @default.
- W2162267805 hasConcept C28631016 @default.
- W2162267805 hasConcept C39432304 @default.
- W2162267805 hasConcept C39807119 @default.
- W2162267805 hasConcept C41008148 @default.
- W2162267805 hasConcept C51399673 @default.
- W2162267805 hasConcept C58640448 @default.
- W2162267805 hasConcept C60478076 @default.
- W2162267805 hasConcept C62649853 @default.
- W2162267805 hasConcept C77088390 @default.
- W2162267805 hasConcept C97137747 @default.
- W2162267805 hasConceptScore W2162267805C101000010 @default.
- W2162267805 hasConceptScore W2162267805C111368507 @default.
- W2162267805 hasConceptScore W2162267805C115540264 @default.
- W2162267805 hasConceptScore W2162267805C127313418 @default.
- W2162267805 hasConceptScore W2162267805C127413603 @default.
- W2162267805 hasConceptScore W2162267805C146978453 @default.
- W2162267805 hasConceptScore W2162267805C147103442 @default.
- W2162267805 hasConceptScore W2162267805C159985019 @default.
- W2162267805 hasConceptScore W2162267805C161840515 @default.
- W2162267805 hasConceptScore W2162267805C166957645 @default.
- W2162267805 hasConceptScore W2162267805C173163844 @default.
- W2162267805 hasConceptScore W2162267805C17534553 @default.
- W2162267805 hasConceptScore W2162267805C192562407 @default.
- W2162267805 hasConceptScore W2162267805C19269812 @default.
- W2162267805 hasConceptScore W2162267805C204323151 @default.
- W2162267805 hasConceptScore W2162267805C205649164 @default.
- W2162267805 hasConceptScore W2162267805C28631016 @default.
- W2162267805 hasConceptScore W2162267805C39432304 @default.
- W2162267805 hasConceptScore W2162267805C39807119 @default.
- W2162267805 hasConceptScore W2162267805C41008148 @default.
- W2162267805 hasConceptScore W2162267805C51399673 @default.