Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162276118> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2162276118 abstract "The original learning rule of the decision based neural network (DBNN) is very much decision-boundary driven. When pattern classes are clearly separated, such learning usually provides very fast and yet satisfactory learning performance. Application examples including OCR and (finite) face/object recognition. Different tactics are needed when dealing with overlapping distribution and/or issues on false acceptance/rejection, which arises in applications such as face recognition and verification. For this, a probabilistic DBNN would be more appealing. This paper investigates several training rules augmenting probabilistic DBNN learning, based largely on the expectation maximization (EM) algorithm. The objective is to establish evidence that the probabilistic DBNN offers an effective tool for multi-sensor classification. Two approaches to multi-sensor classification are proposed and the (enhanced) performance studied. The first involves a hierarchical classification, where sensor information are cascaded in sequential processing stages. The second is multi-sensor fusion, where sensor information are laterally combined to yield improved classification. For the experimental studies, a hierarchical DBNN-based face recognition system is described. For a 38-person face database, the hierarchical classification significantly reduces the false acceptance (from 9.35% to 0%) and false rejection (from 7.29% to 2.25%), as compared to non-hierarchical face recognition. Another promising multiple-sensor classifier fusing face and palm biometric features is also proposed." @default.
- W2162276118 created "2016-06-24" @default.
- W2162276118 creator A5018599351 @default.
- W2162276118 creator A5072714962 @default.
- W2162276118 date "2002-11-19" @default.
- W2162276118 modified "2023-09-26" @default.
- W2162276118 title "Probabilistic DBNN via expectation-maximization with multi-sensor classification applications" @default.
- W2162276118 cites W1507020924 @default.
- W2162276118 cites W2049633694 @default.
- W2162276118 cites W2143956139 @default.
- W2162276118 cites W2159540571 @default.
- W2162276118 cites W2536747761 @default.
- W2162276118 cites W2536989580 @default.
- W2162276118 doi "https://doi.org/10.1109/icip.1995.537624" @default.
- W2162276118 hasPublicationYear "2002" @default.
- W2162276118 type Work @default.
- W2162276118 sameAs 2162276118 @default.
- W2162276118 citedByCount "4" @default.
- W2162276118 crossrefType "proceedings-article" @default.
- W2162276118 hasAuthorship W2162276118A5018599351 @default.
- W2162276118 hasAuthorship W2162276118A5072714962 @default.
- W2162276118 hasConcept C119857082 @default.
- W2162276118 hasConcept C126255220 @default.
- W2162276118 hasConcept C144024400 @default.
- W2162276118 hasConcept C153180895 @default.
- W2162276118 hasConcept C154945302 @default.
- W2162276118 hasConcept C2776330181 @default.
- W2162276118 hasConcept C2779304628 @default.
- W2162276118 hasConcept C31510193 @default.
- W2162276118 hasConcept C33923547 @default.
- W2162276118 hasConcept C36289849 @default.
- W2162276118 hasConcept C41008148 @default.
- W2162276118 hasConcept C42023084 @default.
- W2162276118 hasConcept C49937458 @default.
- W2162276118 hasConcept C95623464 @default.
- W2162276118 hasConceptScore W2162276118C119857082 @default.
- W2162276118 hasConceptScore W2162276118C126255220 @default.
- W2162276118 hasConceptScore W2162276118C144024400 @default.
- W2162276118 hasConceptScore W2162276118C153180895 @default.
- W2162276118 hasConceptScore W2162276118C154945302 @default.
- W2162276118 hasConceptScore W2162276118C2776330181 @default.
- W2162276118 hasConceptScore W2162276118C2779304628 @default.
- W2162276118 hasConceptScore W2162276118C31510193 @default.
- W2162276118 hasConceptScore W2162276118C33923547 @default.
- W2162276118 hasConceptScore W2162276118C36289849 @default.
- W2162276118 hasConceptScore W2162276118C41008148 @default.
- W2162276118 hasConceptScore W2162276118C42023084 @default.
- W2162276118 hasConceptScore W2162276118C49937458 @default.
- W2162276118 hasConceptScore W2162276118C95623464 @default.
- W2162276118 hasLocation W21622761181 @default.
- W2162276118 hasOpenAccess W2162276118 @default.
- W2162276118 hasPrimaryLocation W21622761181 @default.
- W2162276118 hasRelatedWork W1500256378 @default.
- W2162276118 hasRelatedWork W1541889157 @default.
- W2162276118 hasRelatedWork W1548783560 @default.
- W2162276118 hasRelatedWork W1555839986 @default.
- W2162276118 hasRelatedWork W1562228436 @default.
- W2162276118 hasRelatedWork W1572104567 @default.
- W2162276118 hasRelatedWork W1646114407 @default.
- W2162276118 hasRelatedWork W2028688779 @default.
- W2162276118 hasRelatedWork W2056946993 @default.
- W2162276118 hasRelatedWork W2094777467 @default.
- W2162276118 hasRelatedWork W2127453507 @default.
- W2162276118 hasRelatedWork W2141131389 @default.
- W2162276118 hasRelatedWork W2151462084 @default.
- W2162276118 hasRelatedWork W2154145055 @default.
- W2162276118 hasRelatedWork W2159768160 @default.
- W2162276118 hasRelatedWork W2164726323 @default.
- W2162276118 hasRelatedWork W2170780759 @default.
- W2162276118 hasRelatedWork W2598896753 @default.
- W2162276118 hasRelatedWork W3004678791 @default.
- W2162276118 hasRelatedWork W1548727781 @default.
- W2162276118 isParatext "false" @default.
- W2162276118 isRetracted "false" @default.
- W2162276118 magId "2162276118" @default.
- W2162276118 workType "article" @default.