Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162424109> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2162424109 abstract "Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation methods use a priori knowledge of the prostate shape. However, there is a large variation in prostate shape between patients. Our approach uses multispectral magnetic resonance imaging (MRI) data, containing T1, T2 and proton density (PD) weighted images and the distance from the voxel to the centroid of the prostate, together with statistical pattern classifiers. We investigated the performance of a parametric and a non-parametric classification approach by applying a Baysian-quadratic and a k-nearest-neighbor classifier respectively. An annotated data set is made by manual labeling of the image. Using this data set, the classifiers are trained and evaluated. sThe following results are obtained after three experiments. Firstly, using feature selection we showed that the average segmentation error rates are lowest when combining all three images and the distance with the k-nearest-neighbor classifier. Secondly, the confusion matrix showed that the k-nearest-neighbor classifier has the sensitivity. Finally, the prostate is segmented using both classifier. The segmentation boundaries approach the prostate boundaries for most slices. However, in some slices the segmentation result contained errors near the borders of the prostate. The current results showed that segmenting the prostate using multispectral MRI data combined with a statistical classifier is a promising method." @default.
- W2162424109 created "2016-06-24" @default.
- W2162424109 creator A5011591011 @default.
- W2162424109 creator A5063408621 @default.
- W2162424109 creator A5065298754 @default.
- W2162424109 date "2012-02-23" @default.
- W2162424109 modified "2023-09-23" @default.
- W2162424109 title "A new prostate segmentation approach using multispectral magnetic resonance imaging and a statistical pattern classifier" @default.
- W2162424109 cites W1997303631 @default.
- W2162424109 cites W2040591493 @default.
- W2162424109 cites W2052617496 @default.
- W2162424109 cites W2064328569 @default.
- W2162424109 cites W2073282303 @default.
- W2162424109 cites W2078008395 @default.
- W2162424109 cites W2123971620 @default.
- W2162424109 cites W3148625633 @default.
- W2162424109 doi "https://doi.org/10.1117/12.911194" @default.
- W2162424109 hasPublicationYear "2012" @default.
- W2162424109 type Work @default.
- W2162424109 sameAs 2162424109 @default.
- W2162424109 citedByCount "4" @default.
- W2162424109 countsByYear W21624241092014 @default.
- W2162424109 countsByYear W21624241092017 @default.
- W2162424109 countsByYear W21624241092018 @default.
- W2162424109 crossrefType "proceedings-article" @default.
- W2162424109 hasAuthorship W2162424109A5011591011 @default.
- W2162424109 hasAuthorship W2162424109A5063408621 @default.
- W2162424109 hasAuthorship W2162424109A5065298754 @default.
- W2162424109 hasConcept C113238511 @default.
- W2162424109 hasConcept C124504099 @default.
- W2162424109 hasConcept C138602881 @default.
- W2162424109 hasConcept C146599234 @default.
- W2162424109 hasConcept C153180895 @default.
- W2162424109 hasConcept C154945302 @default.
- W2162424109 hasConcept C173163844 @default.
- W2162424109 hasConcept C31972630 @default.
- W2162424109 hasConcept C41008148 @default.
- W2162424109 hasConcept C54170458 @default.
- W2162424109 hasConcept C89600930 @default.
- W2162424109 hasConcept C95623464 @default.
- W2162424109 hasConceptScore W2162424109C113238511 @default.
- W2162424109 hasConceptScore W2162424109C124504099 @default.
- W2162424109 hasConceptScore W2162424109C138602881 @default.
- W2162424109 hasConceptScore W2162424109C146599234 @default.
- W2162424109 hasConceptScore W2162424109C153180895 @default.
- W2162424109 hasConceptScore W2162424109C154945302 @default.
- W2162424109 hasConceptScore W2162424109C173163844 @default.
- W2162424109 hasConceptScore W2162424109C31972630 @default.
- W2162424109 hasConceptScore W2162424109C41008148 @default.
- W2162424109 hasConceptScore W2162424109C54170458 @default.
- W2162424109 hasConceptScore W2162424109C89600930 @default.
- W2162424109 hasConceptScore W2162424109C95623464 @default.
- W2162424109 hasLocation W21624241091 @default.
- W2162424109 hasOpenAccess W2162424109 @default.
- W2162424109 hasPrimaryLocation W21624241091 @default.
- W2162424109 hasRelatedWork W1598680799 @default.
- W2162424109 hasRelatedWork W1915483144 @default.
- W2162424109 hasRelatedWork W1982085174 @default.
- W2162424109 hasRelatedWork W1993803978 @default.
- W2162424109 hasRelatedWork W2015698960 @default.
- W2162424109 hasRelatedWork W2037302265 @default.
- W2162424109 hasRelatedWork W2043589278 @default.
- W2162424109 hasRelatedWork W2059078001 @default.
- W2162424109 hasRelatedWork W2062557036 @default.
- W2162424109 hasRelatedWork W2078008395 @default.
- W2162424109 hasRelatedWork W2108584285 @default.
- W2162424109 hasRelatedWork W2112328560 @default.
- W2162424109 hasRelatedWork W2124489468 @default.
- W2162424109 hasRelatedWork W2125891225 @default.
- W2162424109 hasRelatedWork W2153307585 @default.
- W2162424109 hasRelatedWork W2205236229 @default.
- W2162424109 hasRelatedWork W2434892485 @default.
- W2162424109 hasRelatedWork W2586435489 @default.
- W2162424109 hasRelatedWork W2602669237 @default.
- W2162424109 hasRelatedWork W66531091 @default.
- W2162424109 isParatext "false" @default.
- W2162424109 isRetracted "false" @default.
- W2162424109 magId "2162424109" @default.
- W2162424109 workType "article" @default.