Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162492798> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2162492798 abstract "Let $S$ be a finitely generated pro- $p$ group. Let ${mathcal{E}}_{p^{prime }}(S)$ be the class of profinite groups $G$ that have $S$ as a Sylow subgroup, and such that $S$ intersects nontrivially with every nontrivial normal subgroup of $G$ . In this paper, we investigate whether or not there is a bound on $|G:S|$ for $Gin {mathcal{E}}_{p^{prime }}(S)$ . For instance, we give an example where ${mathcal{E}}_{p^{prime }}(S)$ contains an infinite ascending chain of soluble groups, and on the other hand show that $|G:S|$ is bounded in the case where $S$ is just infinite." @default.
- W2162492798 created "2016-06-24" @default.
- W2162492798 creator A5041846931 @default.
- W2162492798 date "2015-01-19" @default.
- W2162492798 modified "2023-09-27" @default.
- W2162492798 title "THE NUMBER OF PROFINITE GROUPS WITH A SPECIFIED SYLOW SUBGROUP" @default.
- W2162492798 cites W1501381924 @default.
- W2162492798 cites W2021374629 @default.
- W2162492798 cites W2048877987 @default.
- W2162492798 cites W2065204934 @default.
- W2162492798 cites W2069417872 @default.
- W2162492798 cites W2094085862 @default.
- W2162492798 cites W2107146146 @default.
- W2162492798 cites W2327630508 @default.
- W2162492798 cites W4210677700 @default.
- W2162492798 cites W4253676159 @default.
- W2162492798 cites W575620450 @default.
- W2162492798 doi "https://doi.org/10.1017/s1446788714000834" @default.
- W2162492798 hasPublicationYear "2015" @default.
- W2162492798 type Work @default.
- W2162492798 sameAs 2162492798 @default.
- W2162492798 citedByCount "0" @default.
- W2162492798 crossrefType "journal-article" @default.
- W2162492798 hasAuthorship W2162492798A5041846931 @default.
- W2162492798 hasConcept C121332964 @default.
- W2162492798 hasConcept C124535231 @default.
- W2162492798 hasConcept C14735163 @default.
- W2162492798 hasConcept C202444582 @default.
- W2162492798 hasConcept C2777404646 @default.
- W2162492798 hasConcept C2781311116 @default.
- W2162492798 hasConcept C33923547 @default.
- W2162492798 hasConcept C62520636 @default.
- W2162492798 hasConceptScore W2162492798C121332964 @default.
- W2162492798 hasConceptScore W2162492798C124535231 @default.
- W2162492798 hasConceptScore W2162492798C14735163 @default.
- W2162492798 hasConceptScore W2162492798C202444582 @default.
- W2162492798 hasConceptScore W2162492798C2777404646 @default.
- W2162492798 hasConceptScore W2162492798C2781311116 @default.
- W2162492798 hasConceptScore W2162492798C33923547 @default.
- W2162492798 hasConceptScore W2162492798C62520636 @default.
- W2162492798 hasLocation W21624927981 @default.
- W2162492798 hasOpenAccess W2162492798 @default.
- W2162492798 hasPrimaryLocation W21624927981 @default.
- W2162492798 hasRelatedWork W1434825996 @default.
- W2162492798 hasRelatedWork W1586169939 @default.
- W2162492798 hasRelatedWork W1969959031 @default.
- W2162492798 hasRelatedWork W1991959270 @default.
- W2162492798 hasRelatedWork W2044663002 @default.
- W2162492798 hasRelatedWork W2057794924 @default.
- W2162492798 hasRelatedWork W2107146146 @default.
- W2162492798 hasRelatedWork W2120490118 @default.
- W2162492798 hasRelatedWork W2137390949 @default.
- W2162492798 hasRelatedWork W2348282198 @default.
- W2162492798 hasRelatedWork W2372903120 @default.
- W2162492798 hasRelatedWork W2382669701 @default.
- W2162492798 hasRelatedWork W2385319285 @default.
- W2162492798 hasRelatedWork W2468698441 @default.
- W2162492798 hasRelatedWork W2621310183 @default.
- W2162492798 hasRelatedWork W2800319974 @default.
- W2162492798 hasRelatedWork W3021189207 @default.
- W2162492798 hasRelatedWork W3040130306 @default.
- W2162492798 hasRelatedWork W780755082 @default.
- W2162492798 hasRelatedWork W2580878622 @default.
- W2162492798 isParatext "false" @default.
- W2162492798 isRetracted "false" @default.
- W2162492798 magId "2162492798" @default.
- W2162492798 workType "article" @default.