Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162504513> ?p ?o ?g. }
- W2162504513 endingPage "55" @default.
- W2162504513 startingPage "43" @default.
- W2162504513 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 466:43-55 (2012) - DOI: https://doi.org/10.3354/meps09898 Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton Gemma Kulk1,*, Pablo de Vries1, Willem H. van de Poll2, Ronald J. W. Visser1, Anita G. J. Buma1 1Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, University of Groningen, 9747 AG Groningen, The Netherlands 2Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, The Netherlands *Email: g.kulk@rug.nl ABSTRACT: It is expected that climate change will expand the open oligotrophic oceans by enhanced thermal stratification. Because temperature defines the geographic distribution of picophytoplankton in open-ocean ecosystems and regulates photophysiological responses, it is important to understand how temperature affects picophytoplankton growth and photophysiology. Two prokaryotic and 2 eukaryotic picophytoplankton strains were acclimated to 3 different temperatures, ranging from 16 to 24°C. Temperature-dependent growth and photophysiology were assessed by measurements of specific growth rates, cell size, pigment composition, absorption and electron transport rates. Growth of Prochlorococcus marinus (eMED4), Prochlorococcus sp. (eMIT9313), Ostreococcus sp. (clade B) and Pelagomonas calceolata was positively related to temperature, especially in the prokaryotic strains. Changes in photophysiology included increased light harvesting, increased electron transport and reduced photoinhibition at elevated temperatures. However, the changes related to light harvesting and electron transport could not fully explain the observed difference in growth. This suggests that other processes, such as Calvin cycle activity, are likely to limit growth at sub-optimal temperatures in these picophytoplankton strains. The overall changes in photophysiology during temperature acclimation will possibly allow photosynthesis at higher irradiance intensities, but the genetically defined low temperature tolerances and photosynthetic characteristics of the different ecotypes will likely be more important in determining picophytoplankton (depth) distribution and community composition. KEY WORDS: Prochlorococcus · Eukaryotic picophytoplankton · Temperature · Growth · Pigment · Absorption · Electron transport rate Full text in pdf format PreviousNextCite this article as: Kulk G, de Vries P, van de Poll WH, Visser RJW, Buma AGJ (2012) Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Mar Ecol Prog Ser 466:43-55. https://doi.org/10.3354/meps09898 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 466. Online publication date: October 15, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W2162504513 created "2016-06-24" @default.
- W2162504513 creator A5001607048 @default.
- W2162504513 creator A5044302584 @default.
- W2162504513 creator A5051647565 @default.
- W2162504513 creator A5076599351 @default.
- W2162504513 creator A5081028884 @default.
- W2162504513 date "2012-10-15" @default.
- W2162504513 modified "2023-09-23" @default.
- W2162504513 title "Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton" @default.
- W2162504513 cites W1602534227 @default.
- W2162504513 cites W1918055941 @default.
- W2162504513 cites W1971184497 @default.
- W2162504513 cites W1978886837 @default.
- W2162504513 cites W1979957360 @default.
- W2162504513 cites W1980809722 @default.
- W2162504513 cites W1983743725 @default.
- W2162504513 cites W1987070132 @default.
- W2162504513 cites W1999882027 @default.
- W2162504513 cites W2002005035 @default.
- W2162504513 cites W2002637371 @default.
- W2162504513 cites W2008163220 @default.
- W2162504513 cites W2008460854 @default.
- W2162504513 cites W2010290344 @default.
- W2162504513 cites W2015253087 @default.
- W2162504513 cites W2026799833 @default.
- W2162504513 cites W2029199742 @default.
- W2162504513 cites W2038371409 @default.
- W2162504513 cites W2041330625 @default.
- W2162504513 cites W2047599526 @default.
- W2162504513 cites W2049195872 @default.
- W2162504513 cites W2053022429 @default.
- W2162504513 cites W2055667516 @default.
- W2162504513 cites W2059198684 @default.
- W2162504513 cites W2061307721 @default.
- W2162504513 cites W2081143217 @default.
- W2162504513 cites W2083265361 @default.
- W2162504513 cites W2095569250 @default.
- W2162504513 cites W2096005680 @default.
- W2162504513 cites W2098968240 @default.
- W2162504513 cites W2099189943 @default.
- W2162504513 cites W2101651903 @default.
- W2162504513 cites W2108744387 @default.
- W2162504513 cites W2110256211 @default.
- W2162504513 cites W2122580963 @default.
- W2162504513 cites W2123797161 @default.
- W2162504513 cites W2130971614 @default.
- W2162504513 cites W2132218658 @default.
- W2162504513 cites W2132527497 @default.
- W2162504513 cites W2134506423 @default.
- W2162504513 cites W2136553564 @default.
- W2162504513 cites W2137709563 @default.
- W2162504513 cites W2140426834 @default.
- W2162504513 cites W2143402417 @default.
- W2162504513 cites W2143573510 @default.
- W2162504513 cites W2149545078 @default.
- W2162504513 cites W2157257763 @default.
- W2162504513 cites W2161155400 @default.
- W2162504513 cites W2162553887 @default.
- W2162504513 cites W2170867516 @default.
- W2162504513 cites W2179956814 @default.
- W2162504513 cites W2327876184 @default.
- W2162504513 cites W2328468114 @default.
- W2162504513 doi "https://doi.org/10.3354/meps09898" @default.
- W2162504513 hasPublicationYear "2012" @default.
- W2162504513 type Work @default.
- W2162504513 sameAs 2162504513 @default.
- W2162504513 citedByCount "39" @default.
- W2162504513 countsByYear W21625045132013 @default.
- W2162504513 countsByYear W21625045132014 @default.
- W2162504513 countsByYear W21625045132015 @default.
- W2162504513 countsByYear W21625045132016 @default.
- W2162504513 countsByYear W21625045132017 @default.
- W2162504513 countsByYear W21625045132018 @default.
- W2162504513 countsByYear W21625045132019 @default.
- W2162504513 countsByYear W21625045132020 @default.
- W2162504513 countsByYear W21625045132021 @default.
- W2162504513 countsByYear W21625045132022 @default.
- W2162504513 countsByYear W21625045132023 @default.
- W2162504513 crossrefType "journal-article" @default.
- W2162504513 hasAuthorship W2162504513A5001607048 @default.
- W2162504513 hasAuthorship W2162504513A5044302584 @default.
- W2162504513 hasAuthorship W2162504513A5051647565 @default.
- W2162504513 hasAuthorship W2162504513A5076599351 @default.
- W2162504513 hasAuthorship W2162504513A5081028884 @default.
- W2162504513 hasBestOaLocation W21625045131 @default.
- W2162504513 hasConcept C111368507 @default.
- W2162504513 hasConcept C127313418 @default.
- W2162504513 hasConcept C142796444 @default.
- W2162504513 hasConcept C172256273 @default.
- W2162504513 hasConcept C183688256 @default.
- W2162504513 hasConcept C18903297 @default.
- W2162504513 hasConcept C2777219426 @default.
- W2162504513 hasConcept C2779207893 @default.
- W2162504513 hasConcept C2779669040 @default.
- W2162504513 hasConcept C2780892065 @default.
- W2162504513 hasConcept C523546767 @default.
- W2162504513 hasConcept C54355233 @default.