Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162509780> ?p ?o ?g. }
- W2162509780 endingPage "2518" @default.
- W2162509780 startingPage "2489" @default.
- W2162509780 abstract "Abstract. Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (−37 °C < T < −11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between −20 and −27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below −27 °C. While the agreement between different instruments was reasonable below ~ −27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about −27 and −18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above −18 °C. A possible explanation for the deviation between −27 and −18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments." @default.
- W2162509780 created "2016-06-24" @default.
- W2162509780 creator A5000431531 @default.
- W2162509780 creator A5000650126 @default.
- W2162509780 creator A5001095483 @default.
- W2162509780 creator A5005940936 @default.
- W2162509780 creator A5005965575 @default.
- W2162509780 creator A5007177711 @default.
- W2162509780 creator A5009452190 @default.
- W2162509780 creator A5014097284 @default.
- W2162509780 creator A5019152864 @default.
- W2162509780 creator A5025600724 @default.
- W2162509780 creator A5027818470 @default.
- W2162509780 creator A5030721651 @default.
- W2162509780 creator A5031447909 @default.
- W2162509780 creator A5031780924 @default.
- W2162509780 creator A5037741299 @default.
- W2162509780 creator A5049975681 @default.
- W2162509780 creator A5055555746 @default.
- W2162509780 creator A5055665516 @default.
- W2162509780 creator A5057462897 @default.
- W2162509780 creator A5057830500 @default.
- W2162509780 creator A5059139349 @default.
- W2162509780 creator A5060663399 @default.
- W2162509780 creator A5061080913 @default.
- W2162509780 creator A5061117536 @default.
- W2162509780 creator A5061605202 @default.
- W2162509780 creator A5062118142 @default.
- W2162509780 creator A5062875315 @default.
- W2162509780 creator A5065611665 @default.
- W2162509780 creator A5069068409 @default.
- W2162509780 creator A5078547039 @default.
- W2162509780 creator A5080489730 @default.
- W2162509780 creator A5083423078 @default.
- W2162509780 creator A5084434280 @default.
- W2162509780 creator A5085114676 @default.
- W2162509780 creator A5085431646 @default.
- W2162509780 creator A5086946546 @default.
- W2162509780 creator A5088973180 @default.
- W2162509780 creator A5089129788 @default.
- W2162509780 creator A5089697844 @default.
- W2162509780 creator A5090361945 @default.
- W2162509780 creator A5090778979 @default.
- W2162509780 creator A5091171543 @default.
- W2162509780 date "2015-03-06" @default.
- W2162509780 modified "2023-10-12" @default.
- W2162509780 title "A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques" @default.
- W2162509780 cites W1490011456 @default.
- W2162509780 cites W1509184438 @default.
- W2162509780 cites W1513414021 @default.
- W2162509780 cites W1571036276 @default.
- W2162509780 cites W1571663278 @default.
- W2162509780 cites W1587101236 @default.
- W2162509780 cites W1726751785 @default.
- W2162509780 cites W1743228557 @default.
- W2162509780 cites W1949091405 @default.
- W2162509780 cites W1965211608 @default.
- W2162509780 cites W1965899578 @default.
- W2162509780 cites W1972347986 @default.
- W2162509780 cites W1978578998 @default.
- W2162509780 cites W1980792963 @default.
- W2162509780 cites W1993436181 @default.
- W2162509780 cites W1995010538 @default.
- W2162509780 cites W1997615594 @default.
- W2162509780 cites W1998647656 @default.
- W2162509780 cites W2002087569 @default.
- W2162509780 cites W2004736225 @default.
- W2162509780 cites W2010827697 @default.
- W2162509780 cites W2011254969 @default.
- W2162509780 cites W2013409451 @default.
- W2162509780 cites W2016913421 @default.
- W2162509780 cites W2017524299 @default.
- W2162509780 cites W2024514869 @default.
- W2162509780 cites W2044543862 @default.
- W2162509780 cites W2053898969 @default.
- W2162509780 cites W2062308463 @default.
- W2162509780 cites W2062327578 @default.
- W2162509780 cites W2062644486 @default.
- W2162509780 cites W2065223348 @default.
- W2162509780 cites W2065958034 @default.
- W2162509780 cites W2074087563 @default.
- W2162509780 cites W2074847173 @default.
- W2162509780 cites W2075743879 @default.
- W2162509780 cites W2088902342 @default.
- W2162509780 cites W2089618495 @default.
- W2162509780 cites W2091160472 @default.
- W2162509780 cites W2093674996 @default.
- W2162509780 cites W2100069759 @default.
- W2162509780 cites W2103328925 @default.
- W2162509780 cites W2104789550 @default.
- W2162509780 cites W2105286019 @default.
- W2162509780 cites W2109223311 @default.
- W2162509780 cites W2109297789 @default.
- W2162509780 cites W2109631880 @default.
- W2162509780 cites W2110770653 @default.
- W2162509780 cites W2112360250 @default.
- W2162509780 cites W2114337380 @default.
- W2162509780 cites W2114545703 @default.