Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162660587> ?p ?o ?g. }
- W2162660587 endingPage "624" @default.
- W2162660587 startingPage "615" @default.
- W2162660587 abstract "It is estimated that as many as 30,000 offspring, mostly cattle, have been produced in the past 5 years using AI or some other means of transport with spermatozoa sexed by flow cytometric sperm sorting and DNA as the marker of differentiation. It is well documented that the only marker in sperm that can be effectively used for the separation of X- and Y-chromosome bearing spermatozoa is DNA. The method, as it is currently used worldwide, is commonly known as the Beltsville Sperm Sexing Technology. The method is based on the separation of sperm using flow cytometric sorting to sort fluorescently (Hoechst 33342) labeled sperm based on their relative content of DNA within each population of X- and Y-spermatozoa. Currently, sperm can be produced routinely at a rate of 15 million X- and an equal number of Y-sperm per hour. The technology is being applied in livestock, laboratory animals, and zoo animals; and in humans with a success rate of 90–95% in shifting the sex ratio of offspring. Delivery of sexed sperm to the site of fertilization varies with species. Conventional AI, intrauterine insemination, intra-tubal insemination, IVF with embryo transfer and deep intrauterine insemination are effectively used to obtain pregnancies dependent on species. Although sperm of all species can be sorted with high purity, achieving pregnancies with the low numbers of sperm needed for commercial application remains particularly elusive in swine. Deep intrauterine insemination with 50–100 million sexed boar sperm per AI has given encouragement to the view that insemination with one-fiftieth of the standard insemination number will be sufficient to achieve pregnancies with sexed sperm when specialized catheters are used. Catheter design, volume of inseminate, number of sexed sperm are areas where further development is needed before routine inseminations with sexed sperm can be conducted in swine. Cryopreservation of sex-sorted sperm has been routinely applied in cattle. Although piglets have been born from frozen sex-sorted boar sperm, freezing and processing protocols in combination with sex-sorted sperm are not yet optimal for routine use. This review will discuss the most recent results and advances in sex-sorting swine sperm with emphasis on what developments must take place for the sexing technology to be applied in commercial practice." @default.
- W2162660587 created "2016-06-24" @default.
- W2162660587 creator A5008849004 @default.
- W2162660587 creator A5010477256 @default.
- W2162660587 creator A5026171054 @default.
- W2162660587 creator A5053367739 @default.
- W2162660587 creator A5073061524 @default.
- W2162660587 date "2005-01-01" @default.
- W2162660587 modified "2023-10-16" @default.
- W2162660587 title "Preselection of sex of offspring in swine for production: current status of the process and its application" @default.
- W2162660587 cites W1499121780 @default.
- W2162660587 cites W1654099816 @default.
- W2162660587 cites W1966630596 @default.
- W2162660587 cites W1969635765 @default.
- W2162660587 cites W1976930535 @default.
- W2162660587 cites W1997808069 @default.
- W2162660587 cites W2009246158 @default.
- W2162660587 cites W2011968107 @default.
- W2162660587 cites W2015823200 @default.
- W2162660587 cites W2021376347 @default.
- W2162660587 cites W2038673941 @default.
- W2162660587 cites W2039698632 @default.
- W2162660587 cites W2046935240 @default.
- W2162660587 cites W2063163191 @default.
- W2162660587 cites W2067601324 @default.
- W2162660587 cites W2076453557 @default.
- W2162660587 cites W2091083626 @default.
- W2162660587 cites W2097317907 @default.
- W2162660587 cites W2124849818 @default.
- W2162660587 cites W2131599669 @default.
- W2162660587 cites W2138970948 @default.
- W2162660587 cites W2139856630 @default.
- W2162660587 cites W2143875366 @default.
- W2162660587 cites W2152908680 @default.
- W2162660587 cites W2154789723 @default.
- W2162660587 cites W2157648764 @default.
- W2162660587 cites W2158348283 @default.
- W2162660587 cites W2160191291 @default.
- W2162660587 cites W2161072077 @default.
- W2162660587 cites W2167519737 @default.
- W2162660587 cites W2169461112 @default.
- W2162660587 doi "https://doi.org/10.1016/j.theriogenology.2004.09.035" @default.
- W2162660587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15626420" @default.
- W2162660587 hasPublicationYear "2005" @default.
- W2162660587 type Work @default.
- W2162660587 sameAs 2162660587 @default.
- W2162660587 citedByCount "68" @default.
- W2162660587 countsByYear W21626605872012 @default.
- W2162660587 countsByYear W21626605872013 @default.
- W2162660587 countsByYear W21626605872014 @default.
- W2162660587 countsByYear W21626605872015 @default.
- W2162660587 countsByYear W21626605872016 @default.
- W2162660587 countsByYear W21626605872017 @default.
- W2162660587 countsByYear W21626605872018 @default.
- W2162660587 countsByYear W21626605872019 @default.
- W2162660587 countsByYear W21626605872020 @default.
- W2162660587 countsByYear W21626605872021 @default.
- W2162660587 countsByYear W21626605872022 @default.
- W2162660587 countsByYear W21626605872023 @default.
- W2162660587 crossrefType "journal-article" @default.
- W2162660587 hasAuthorship W2162660587A5008849004 @default.
- W2162660587 hasAuthorship W2162660587A5010477256 @default.
- W2162660587 hasAuthorship W2162660587A5026171054 @default.
- W2162660587 hasAuthorship W2162660587A5053367739 @default.
- W2162660587 hasAuthorship W2162660587A5073061524 @default.
- W2162660587 hasConcept C112672928 @default.
- W2162660587 hasConcept C160099875 @default.
- W2162660587 hasConcept C16685009 @default.
- W2162660587 hasConcept C196843134 @default.
- W2162660587 hasConcept C2777005246 @default.
- W2162660587 hasConcept C2778093475 @default.
- W2162660587 hasConcept C2778610407 @default.
- W2162660587 hasConcept C2779234561 @default.
- W2162660587 hasConcept C2779383911 @default.
- W2162660587 hasConcept C2781087480 @default.
- W2162660587 hasConcept C2908647359 @default.
- W2162660587 hasConcept C2994278967 @default.
- W2162660587 hasConcept C54355233 @default.
- W2162660587 hasConcept C71924100 @default.
- W2162660587 hasConcept C86803240 @default.
- W2162660587 hasConcept C87073359 @default.
- W2162660587 hasConcept C88972607 @default.
- W2162660587 hasConcept C99454951 @default.
- W2162660587 hasConceptScore W2162660587C112672928 @default.
- W2162660587 hasConceptScore W2162660587C160099875 @default.
- W2162660587 hasConceptScore W2162660587C16685009 @default.
- W2162660587 hasConceptScore W2162660587C196843134 @default.
- W2162660587 hasConceptScore W2162660587C2777005246 @default.
- W2162660587 hasConceptScore W2162660587C2778093475 @default.
- W2162660587 hasConceptScore W2162660587C2778610407 @default.
- W2162660587 hasConceptScore W2162660587C2779234561 @default.
- W2162660587 hasConceptScore W2162660587C2779383911 @default.
- W2162660587 hasConceptScore W2162660587C2781087480 @default.
- W2162660587 hasConceptScore W2162660587C2908647359 @default.
- W2162660587 hasConceptScore W2162660587C2994278967 @default.
- W2162660587 hasConceptScore W2162660587C54355233 @default.
- W2162660587 hasConceptScore W2162660587C71924100 @default.
- W2162660587 hasConceptScore W2162660587C86803240 @default.