Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162783119> ?p ?o ?g. }
- W2162783119 abstract "The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B(2)) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. SUBJECT OF THE EVIDENCE-BASED ANALYSIS: The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: TECHNICAL: How technically demanding is corneal cross-linking and what are the operative risks?What is known about the broader safety profile of corneal cross-linking?Effectiveness - Corneal Surface Topographic Affects:What are the corneal surface remodeling effects of corneal cross-linking?Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)?Effectiveness -Visual Acuity:What impacts does the remodeling have on visual acuity?Are these impacts predictable, stable, adjustable and durable?Effectiveness - Refractive Outcomes: What impact does remodeling have on refractive outcomes?Effectiveness - Visual Quality (Symptoms): What impact does corneal cross-linking have on vision quality such as contrast vision, and decreased visual symptoms (halos, fluctuating vision)?Effectiveness - Contact lens tolerance: To what extent does contact lens intolerance improve after corneal cross-linking?Vision-Related QOL: What is the impact of corneal cross-linking on functional visual rehabilitation and quality of life?PATIENT SATISFACTION: Are patients satisfied with their vision following the procedure?Disease Process:What impact does corneal cross-linking have on the underling corneal thinning disease process?Does corneal cross-linking delay or defer the need for a corneal transplant?What is the comparative safety and effectiveness of corneal cross-linking compared with other minimally invasive treatments for corneal ectasia such as intrastromal corneal rings?TARGET POPULATION AND CONDITION Corneal ectasia (thinning) disorders represent a range of disorders involving either primary disease conditions, such as keratoconus (KC) and pellucid marginal corneal degeneration, or secondary iatrogenic conditions, such as corneal thinning occurring after laser in situ keratomileusis (LASIK) refractive surgery. Corneal thinning is a disease that occurs when the normally round dome-shaped cornea progressively thins causing a cone-like bulge or forward protrusion in response to the normal pressure of the eye. The thinning occurs primarily in the stroma layers and is believed to be a breakdown in the collagen process. This bulging can lead to irregular astigmatism or shape of the cornea. Because the anterior part of the cornea is responsible for most of the focusing of the light on the retina, this can then result in loss of visual acuity. The reduced visual acuity can make even simple daily tasks, such as driving, watching television or reading, difficult to perform. Keratoconus is the most common form of corneal thinning disorder and involves a noninflammatory chronic disease process of progressive corneal thinning. Although the specific cause for the biomechanical alterations in the corneal stroma is unknown, there is a growing body of evidence suggesting that genetic factors may play an important role. Keratoconus is a rare disease (< 0.05% of the population) and is unique among chronic eye diseases because it has an early onset, with a median age of 25 years. Disease management for this condition follows a step-wise approach depending on disease severity. Contact lenses are the primary treatment of choice when there is irregular astigmatism associated with the disease. Patients are referred for corneal transplants as a last option when they can no longer tolerate contact lenses or when lenses no longer provide adequate vision. Keratoconus is one of the leading indications for corneal transplants and has been so for the last 3 decades. Despite the high success rate of corneal transplants (up to 20 years) there are reasons to defer it as long as possible. Patients with keratoconus are generally young and a longer-term graft survival of at least 30 or 40 years may be necessary. The surgery itself involves lengthy time off work and postsurgery, while potential complications include long-term steroid use, secondary cataracts, and glaucoma. After a corneal transplant, keratoconus may recur resulting in a need for subsequent interventions. Residual refractive errors and astigmatism can remain challenges after transplantation, and high refractive surgery and regraft rates in KC patients have been reported. Visual rehabilitation or recovery of visual acuity after transplant may be slow and/or unsatisfactory to patients.Corneal cross-linking involves the use of riboflavin (vitamin B(2)) and ultraviolet-A (UVA) radiation. A UVA irradiation device known as the CXL® device (license number 77989) by ACCUTECH Medical Technologies Inc. has been licensed by Health Canada as a Class II device since September 19, 2008. An illumination device that emits homogeneous UVA, in combination with any generic form of riboflavin, is licensed by Health Canada for the indication to slow or stop the progression of corneal thinning caused by progressive keratectasia, iatrogenic keratectasia after laser-assisted in situ keratomileusis (LASIK) and pellucid marginal degeneration. The same device is named the UV-X® device by IROCMedical, with approvals in Argentina, the European Union and Australia. UVA devices all use light emitting diodes to generate UVA at a wavelength of 360-380 microns but vary in the number of diodes (5 to 25), focusing systems, working distance, beam diameter, beam uniformity and extent to which the operator can vary the parameters. In Ontario, CXL is currently offered at over 15 private eye clinics by refractive surgeons and ophthalmologists. The treatment is an outpatient procedure generally performed with topical anesthesia. The treatment consists of several well defined procedures. The epithelial cell layer is first removed, often using a blunt spatula in a 9.0 mm diameter under sterile conditions. This step is followed by the application of topical 0.1% riboflavin (vitamin B(2)) solution every 3 to 5 minutes for 25 minutes to ensure that the corneal stroma is fully penetrated. A solid-state UVA light source with a wavelength of 370 nm (maximum absorption of riboflavin) and an irradiance of 3 mW/cm(2) is used to irradiate the central cornea. Following treatment, a soft bandage lens is applied and prescriptions are given for oral pain medications, preservative-free tears, anti-inflammatory drops (preferably not nonsteroidal anti-inflammatory drugs, or NSAIDs) and antibiotic eye drops. Patients are recalled 1 week following the procedure to evaluate re-epithelialization and they are followed-up subsequently.A literature search was conducted on photochemical corneal collagen cross-linking with riboflavin (vitamin B(2)) and ultraviolet-A for the management of corneal thinning disorders using a search strategy with appropriate keywords and subject headings for CXL for literature published up until April 17, 2011. The literature search for this Health Technology Assessment (HTA) review was performed using the Cochrane Library, the Emergency Care Research Institute (ECRI) and the Centre for Reviews and Dissemination. The websites of several other health technology agencies were also reviewed, including the Canadian Agency for Drugs and Technologies in Health (CADTH) and the United Kingdom's National Institute for Clinical Excellence (NICE). The databases searched included OVID MEDLINE, MEDLINE IN-Process and other Non-Indexed Citations such as EMBASE. As the evidence review included an intervention for a rare condition, case series and case reports, particularly for complications and adverse events, were reviewed. A total of 316 citations were identified and all abstracts were reviewed by a single reviewer for eligibility. For those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. (ABSTRACT TRUNCATED)" @default.
- W2162783119 created "2016-06-24" @default.
- W2162783119 creator A5040907173 @default.
- W2162783119 creator A5056007023 @default.
- W2162783119 creator A5063425365 @default.
- W2162783119 date "2011-01-01" @default.
- W2162783119 modified "2023-09-29" @default.
- W2162783119 title "Collagen cross-linking using riboflavin and ultraviolet-a for corneal thinning disorders: an evidence-based analysis." @default.
- W2162783119 cites W100935137 @default.
- W2162783119 cites W1025941331 @default.
- W2162783119 cites W10598231 @default.
- W2162783119 cites W1247968195 @default.
- W2162783119 cites W1502116593 @default.
- W2162783119 cites W1528388797 @default.
- W2162783119 cites W1530370429 @default.
- W2162783119 cites W1569285898 @default.
- W2162783119 cites W1813511937 @default.
- W2162783119 cites W1907435754 @default.
- W2162783119 cites W1964772439 @default.
- W2162783119 cites W1967078857 @default.
- W2162783119 cites W1970412040 @default.
- W2162783119 cites W1971073600 @default.
- W2162783119 cites W1975634954 @default.
- W2162783119 cites W1975930198 @default.
- W2162783119 cites W1977100983 @default.
- W2162783119 cites W1978708618 @default.
- W2162783119 cites W1980873553 @default.
- W2162783119 cites W1981840031 @default.
- W2162783119 cites W1982091312 @default.
- W2162783119 cites W1983311424 @default.
- W2162783119 cites W1986938496 @default.
- W2162783119 cites W1987411309 @default.
- W2162783119 cites W1990198787 @default.
- W2162783119 cites W1994811858 @default.
- W2162783119 cites W1995384858 @default.
- W2162783119 cites W1995783950 @default.
- W2162783119 cites W1995932086 @default.
- W2162783119 cites W1997603015 @default.
- W2162783119 cites W1998526144 @default.
- W2162783119 cites W1998609087 @default.
- W2162783119 cites W2000544973 @default.
- W2162783119 cites W2003390221 @default.
- W2162783119 cites W2003518549 @default.
- W2162783119 cites W2004276975 @default.
- W2162783119 cites W2005181129 @default.
- W2162783119 cites W2005602563 @default.
- W2162783119 cites W2006415246 @default.
- W2162783119 cites W2006500121 @default.
- W2162783119 cites W2009684304 @default.
- W2162783119 cites W2009851573 @default.
- W2162783119 cites W2010090512 @default.
- W2162783119 cites W2010928340 @default.
- W2162783119 cites W2015773078 @default.
- W2162783119 cites W2016121962 @default.
- W2162783119 cites W2018546690 @default.
- W2162783119 cites W2018624577 @default.
- W2162783119 cites W2019494287 @default.
- W2162783119 cites W2019736084 @default.
- W2162783119 cites W2020730207 @default.
- W2162783119 cites W2024798699 @default.
- W2162783119 cites W2025472324 @default.
- W2162783119 cites W2025659107 @default.
- W2162783119 cites W2026752113 @default.
- W2162783119 cites W2026849296 @default.
- W2162783119 cites W2027087089 @default.
- W2162783119 cites W2028634883 @default.
- W2162783119 cites W2032858650 @default.
- W2162783119 cites W2032995136 @default.
- W2162783119 cites W2033719195 @default.
- W2162783119 cites W2034009074 @default.
- W2162783119 cites W2035377277 @default.
- W2162783119 cites W2036798678 @default.
- W2162783119 cites W2037178660 @default.
- W2162783119 cites W2037259811 @default.
- W2162783119 cites W2039681967 @default.
- W2162783119 cites W2042125046 @default.
- W2162783119 cites W2043427789 @default.
- W2162783119 cites W2044222910 @default.
- W2162783119 cites W2044874594 @default.
- W2162783119 cites W2047716984 @default.
- W2162783119 cites W2048669427 @default.
- W2162783119 cites W2052862619 @default.
- W2162783119 cites W2053430849 @default.
- W2162783119 cites W2059662238 @default.
- W2162783119 cites W2064332187 @default.
- W2162783119 cites W2066035894 @default.
- W2162783119 cites W2066671886 @default.
- W2162783119 cites W2070787816 @default.
- W2162783119 cites W2074055274 @default.
- W2162783119 cites W2074106258 @default.
- W2162783119 cites W2079687392 @default.
- W2162783119 cites W2079735716 @default.
- W2162783119 cites W2081760022 @default.
- W2162783119 cites W2081999140 @default.
- W2162783119 cites W2087800063 @default.
- W2162783119 cites W2089638001 @default.
- W2162783119 cites W2094033829 @default.
- W2162783119 cites W2094936167 @default.
- W2162783119 cites W2101342204 @default.
- W2162783119 cites W2108372637 @default.