Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162854206> ?p ?o ?g. }
- W2162854206 endingPage "406" @default.
- W2162854206 startingPage "378" @default.
- W2162854206 abstract "Abstract The decay characteristics and invariants of grid turbulence were investigated by means of laboratory experiments conducted in a wind tunnel. A turbulence-generating grid was installed at the entrance of the test section for generating nearly isotropic turbulence. Five grids (square bars of mesh sizes $M= 15$ , 25 and 50 mm and cylindrical bars of mesh sizes $M= 10$ and 25 mm) were used. The solidity of all grids is $sigma = 0. 36$ . The instantaneous streamwise and vertical (cross-stream) velocities were measured by hot-wire anemometry. The mesh Reynolds numbers were adjusted to $R{e}_{M} = 6700$ , 9600, 16 000 and 33 000. The Reynolds numbers based on the Taylor microscale $R{e}_{lambda } $ in the decay region ranged from 27 to 112. In each case, the result shows that the decay exponent of turbulence intensity is close to the theoretical value of ${- }6/ 5$ (for the $M= 10~mathrm{mm} $ grid, ${- }6(1+ p)/ 5sim - 1. 32$ ) for Saffman turbulence. Here, $p$ is the power of the dimensionless energy dissipation coefficient, $A(t)sim {t}^{p} $ . Furthermore, each case shows that streamwise variations in the integral length scales, ${L}_{uu} $ and ${L}_{vv} $ , and the Taylor microscale $lambda $ grow according to ${L}_{uu} sim 2{L}_{vv} propto {(x/ M- {x}_{0} / M)}^{2/ 5} $ (for the $M= 10~mathrm{mm} $ grid, ${L}_{uu} propto {(x/ M- {x}_{0} / M)}^{2(1+ p)/ 5} sim {(x/ M- {x}_{0} / M)}^{0. 44} $ ) and $lambda propto {(x/ M- {x}_{0} / M)}^{1/ 2} $ , respectively, at $x/ Mgt 40{unicode{x2013}} 60$ (depending on the experimental conditions, including grid geometry), where $x$ is the streamwise distance from the grid and ${x}_{0} $ is the virtual origin. We demonstrated that in the decay region of grid turbulence, ${ u}_{mathit{rms}}^{2} { L}_{uu}^{3} $ and ${ v}_{mathit{rms}}^{2} { L}_{vv}^{3} $ , which correspond to Saffman’s integral, are constant for all grids and examined $R{e}_{M} $ values. However, ${ u}_{mathit{rms}}^{2} { L}_{uu}^{5} $ and ${ v}_{mathit{rms}}^{2} { L}_{vv}^{5} $ , which correspond to Loitsianskii’s integral, and ${ u}_{mathit{rms}}^{2} { L}_{uu}^{2} $ and ${ v}_{mathit{rms}}^{2} { L}_{vv}^{2} $ , which correspond to the complete self-similarity of energy spectrum and $langle {boldsymbol{u}}^{2} rangle sim {t}^{- 1} $ , are not constant. Consequently, we conclude that grid turbulence is a type of Saffman turbulence for the examined $R{e}_{M} $ range of 6700–33 000 ( $R{e}_{lambda } = 27{unicode{x2013}} 112$ ) regardless of grid geometry." @default.
- W2162854206 created "2016-06-24" @default.
- W2162854206 creator A5002455699 @default.
- W2162854206 creator A5010521919 @default.
- W2162854206 creator A5022850784 @default.
- W2162854206 creator A5046482743 @default.
- W2162854206 creator A5051170464 @default.
- W2162854206 creator A5054497666 @default.
- W2162854206 creator A5075537020 @default.
- W2162854206 date "2013-12-06" @default.
- W2162854206 modified "2023-10-16" @default.
- W2162854206 title "On invariants in grid turbulence at moderate Reynolds numbers" @default.
- W2162854206 cites W1971168246 @default.
- W2162854206 cites W1972615582 @default.
- W2162854206 cites W1983172941 @default.
- W2162854206 cites W1985291015 @default.
- W2162854206 cites W1994273726 @default.
- W2162854206 cites W2007550486 @default.
- W2162854206 cites W2007988664 @default.
- W2162854206 cites W2009161457 @default.
- W2162854206 cites W2018951667 @default.
- W2162854206 cites W2030427781 @default.
- W2162854206 cites W2032126545 @default.
- W2162854206 cites W2032204202 @default.
- W2162854206 cites W2035117127 @default.
- W2162854206 cites W2040058380 @default.
- W2162854206 cites W2069249327 @default.
- W2162854206 cites W2072252432 @default.
- W2162854206 cites W2080760874 @default.
- W2162854206 cites W2083495257 @default.
- W2162854206 cites W2084354530 @default.
- W2162854206 cites W2088653577 @default.
- W2162854206 cites W2090530203 @default.
- W2162854206 cites W2094068548 @default.
- W2162854206 cites W2104055838 @default.
- W2162854206 cites W2115390656 @default.
- W2162854206 cites W2117652238 @default.
- W2162854206 cites W2128652407 @default.
- W2162854206 cites W2129976696 @default.
- W2162854206 cites W2130352070 @default.
- W2162854206 cites W2142681606 @default.
- W2162854206 cites W2144873597 @default.
- W2162854206 cites W2150491118 @default.
- W2162854206 cites W2152186746 @default.
- W2162854206 cites W2296129844 @default.
- W2162854206 cites W2566620089 @default.
- W2162854206 cites W2567500492 @default.
- W2162854206 cites W2799484275 @default.
- W2162854206 cites W4206068733 @default.
- W2162854206 doi "https://doi.org/10.1017/jfm.2013.595" @default.
- W2162854206 hasPublicationYear "2013" @default.
- W2162854206 type Work @default.
- W2162854206 sameAs 2162854206 @default.
- W2162854206 citedByCount "49" @default.
- W2162854206 countsByYear W21628542062014 @default.
- W2162854206 countsByYear W21628542062016 @default.
- W2162854206 countsByYear W21628542062017 @default.
- W2162854206 countsByYear W21628542062018 @default.
- W2162854206 countsByYear W21628542062019 @default.
- W2162854206 countsByYear W21628542062020 @default.
- W2162854206 countsByYear W21628542062021 @default.
- W2162854206 countsByYear W21628542062022 @default.
- W2162854206 countsByYear W21628542062023 @default.
- W2162854206 crossrefType "journal-article" @default.
- W2162854206 hasAuthorship W2162854206A5002455699 @default.
- W2162854206 hasAuthorship W2162854206A5010521919 @default.
- W2162854206 hasAuthorship W2162854206A5022850784 @default.
- W2162854206 hasAuthorship W2162854206A5046482743 @default.
- W2162854206 hasAuthorship W2162854206A5051170464 @default.
- W2162854206 hasAuthorship W2162854206A5054497666 @default.
- W2162854206 hasAuthorship W2162854206A5075537020 @default.
- W2162854206 hasConcept C120665830 @default.
- W2162854206 hasConcept C121332964 @default.
- W2162854206 hasConcept C15476950 @default.
- W2162854206 hasConcept C182748727 @default.
- W2162854206 hasConcept C184050105 @default.
- W2162854206 hasConcept C196558001 @default.
- W2162854206 hasConcept C24872484 @default.
- W2162854206 hasConcept C2778113609 @default.
- W2162854206 hasConcept C57879066 @default.
- W2162854206 hasConcept C91331278 @default.
- W2162854206 hasConceptScore W2162854206C120665830 @default.
- W2162854206 hasConceptScore W2162854206C121332964 @default.
- W2162854206 hasConceptScore W2162854206C15476950 @default.
- W2162854206 hasConceptScore W2162854206C182748727 @default.
- W2162854206 hasConceptScore W2162854206C184050105 @default.
- W2162854206 hasConceptScore W2162854206C196558001 @default.
- W2162854206 hasConceptScore W2162854206C24872484 @default.
- W2162854206 hasConceptScore W2162854206C2778113609 @default.
- W2162854206 hasConceptScore W2162854206C57879066 @default.
- W2162854206 hasConceptScore W2162854206C91331278 @default.
- W2162854206 hasLocation W21628542061 @default.
- W2162854206 hasOpenAccess W2162854206 @default.
- W2162854206 hasPrimaryLocation W21628542061 @default.
- W2162854206 hasRelatedWork W101076596 @default.
- W2162854206 hasRelatedWork W1991156778 @default.
- W2162854206 hasRelatedWork W2026747528 @default.
- W2162854206 hasRelatedWork W2052645887 @default.