Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162893449> ?p ?o ?g. }
- W2162893449 endingPage "4150" @default.
- W2162893449 startingPage "4135" @default.
- W2162893449 abstract "Isolation is reported of the four mutant proteins of the electron-transfer protein rubredoxin from Clostridium pasteurianum in which each of the four cysteine ligands is changed in turn to serine. They fall into two pairs whose properties depend on whether an interior (C6, C39) or a surface (C9, C42) cysteine ligand is substituted. A crystal structure of the oxidized C42S protein (1.65 Å; R, 18.5%) confirms the presence of an FeIII(Sγ-Cys)3(Oγ-Ser) center (Fe−O, 1.82(8) Å). Significant structural change is restricted to the region around the mutation. EXAFS experiments confirm FeIIIS3O (O = Oγ-Ser or OHx) centers in each oxidized protein at pH 8. The reduction potentials of the FeIII/II couple are decreased by about 100 and 200 mV, respectively, in the interior and surface ligand mutants. The potentials are pH-dependent with respective pKared values of about 9 and 7. EXAFS data indicate an increase of 0.2−0.3 Å in the FeII−O distances in passing through these characteristic pKared values. 1H NMR experiments on CdII forms reveal the presence of CdII(S-Cys)3{O(H)-Ser} centers in the surface ligand mutants C9S and C42S by the detection of 113Cd−O−CHβ2 coupling and S−OHγ resonances. The assumption of the presence of FeII(S-Cys)3(O-Ser) centers in each mutant protein at pH values above the characteristic pKared allows a simple interpretation of the electrochemical behavior. Protonation of the Fe−Oγ-Ser link upon reduction is proposed, followed by hydrolysis at lower pH values: FeIII−Oγ-Ser + H+ + e- → FeII−Oγ(H)-Ser; FeII−Oγ(H)-Ser + H2O → FeII−OH2 + HOγ-Ser. The differences in reduction potentials, their pH dependence, and the onset of irreversible electrochemistry can be attributed to differences in the Fe−O bonds of the interior and surface ligands. These differences appear to result from variation in the conformational flexibility of the protein chelate loops which carry the ligands. An attempt to generate crystals of the reduced FeII-C42S protein by treatment of FeIII-C42S crystals with dithionite at pH 4 led to loss of iron. A crystal structure (1.6 Å; R, 16.8%) reveals that cysteine residues 6 and 9 have trapped the oxidation product SO2, a result confirmed by reactions in solution: Cys-SH + SO2 → Cys-SII−SIVO2- + H+." @default.
- W2162893449 created "2016-06-24" @default.
- W2162893449 creator A5029281644 @default.
- W2162893449 creator A5030987702 @default.
- W2162893449 creator A5045117180 @default.
- W2162893449 creator A5058639044 @default.
- W2162893449 creator A5061514302 @default.
- W2162893449 creator A5064600594 @default.
- W2162893449 creator A5066460871 @default.
- W2162893449 creator A5069465045 @default.
- W2162893449 creator A5078327359 @default.
- W2162893449 date "1998-04-17" @default.
- W2162893449 modified "2023-10-16" @default.
- W2162893449 title "The Rubredoxin from <i>Clostridium pasteurianum</i>: Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant" @default.
- W2162893449 cites W1564233804 @default.
- W2162893449 cites W1870889793 @default.
- W2162893449 cites W1963995993 @default.
- W2162893449 cites W1965614166 @default.
- W2162893449 cites W1975722517 @default.
- W2162893449 cites W1978743038 @default.
- W2162893449 cites W1980312994 @default.
- W2162893449 cites W1983678966 @default.
- W2162893449 cites W1983925681 @default.
- W2162893449 cites W1989975769 @default.
- W2162893449 cites W1990361076 @default.
- W2162893449 cites W1990617011 @default.
- W2162893449 cites W1991941342 @default.
- W2162893449 cites W1991980261 @default.
- W2162893449 cites W1992631514 @default.
- W2162893449 cites W1993844842 @default.
- W2162893449 cites W1994001602 @default.
- W2162893449 cites W1994948949 @default.
- W2162893449 cites W2000011871 @default.
- W2162893449 cites W2001578190 @default.
- W2162893449 cites W2007070234 @default.
- W2162893449 cites W2013653287 @default.
- W2162893449 cites W2015094321 @default.
- W2162893449 cites W2015923551 @default.
- W2162893449 cites W2018690840 @default.
- W2162893449 cites W2021235199 @default.
- W2162893449 cites W2025261152 @default.
- W2162893449 cites W2029245541 @default.
- W2162893449 cites W2031729002 @default.
- W2162893449 cites W2035034685 @default.
- W2162893449 cites W2036852379 @default.
- W2162893449 cites W2042591696 @default.
- W2162893449 cites W2045327756 @default.
- W2162893449 cites W2049702083 @default.
- W2162893449 cites W2052090285 @default.
- W2162893449 cites W2052540589 @default.
- W2162893449 cites W2052570312 @default.
- W2162893449 cites W2055779889 @default.
- W2162893449 cites W2064357825 @default.
- W2162893449 cites W2065434867 @default.
- W2162893449 cites W2065601547 @default.
- W2162893449 cites W2067359298 @default.
- W2162893449 cites W2077390421 @default.
- W2162893449 cites W2077409318 @default.
- W2162893449 cites W2081733125 @default.
- W2162893449 cites W2083704039 @default.
- W2162893449 cites W2089119194 @default.
- W2162893449 cites W2090079874 @default.
- W2162893449 cites W2093324977 @default.
- W2162893449 cites W2093700493 @default.
- W2162893449 cites W2110049624 @default.
- W2162893449 cites W2129558307 @default.
- W2162893449 cites W2152733087 @default.
- W2162893449 cites W2155836823 @default.
- W2162893449 cites W2290569355 @default.
- W2162893449 cites W2336951438 @default.
- W2162893449 cites W2401130360 @default.
- W2162893449 cites W2413818851 @default.
- W2162893449 cites W2949250147 @default.
- W2162893449 cites W2951053628 @default.
- W2162893449 cites W2952532516 @default.
- W2162893449 cites W3005289688 @default.
- W2162893449 cites W4239867393 @default.
- W2162893449 cites W50393410 @default.
- W2162893449 cites W884073466 @default.
- W2162893449 doi "https://doi.org/10.1021/ja973162c" @default.
- W2162893449 hasPublicationYear "1998" @default.
- W2162893449 type Work @default.
- W2162893449 sameAs 2162893449 @default.
- W2162893449 citedByCount "69" @default.
- W2162893449 countsByYear W21628934492012 @default.
- W2162893449 countsByYear W21628934492013 @default.
- W2162893449 countsByYear W21628934492014 @default.
- W2162893449 countsByYear W21628934492015 @default.
- W2162893449 countsByYear W21628934492016 @default.
- W2162893449 countsByYear W21628934492017 @default.
- W2162893449 countsByYear W21628934492018 @default.
- W2162893449 countsByYear W21628934492019 @default.
- W2162893449 countsByYear W21628934492020 @default.
- W2162893449 countsByYear W21628934492021 @default.
- W2162893449 countsByYear W21628934492022 @default.
- W2162893449 countsByYear W21628934492023 @default.
- W2162893449 crossrefType "journal-article" @default.
- W2162893449 hasAuthorship W2162893449A5029281644 @default.