Matches in SemOpenAlex for { <https://semopenalex.org/work/W2162909529> ?p ?o ?g. }
- W2162909529 endingPage "21" @default.
- W2162909529 startingPage "11" @default.
- W2162909529 abstract "The synthetic antioxidant ethoxyquin (EQ) is increasingly used in animal feeds and has been candidate for carcinogenicity testing. EQ has the potential for toxicological and adverse health effects for both fish and fish consumers through “carryover” processes. The toxicological aspects of EQ have not been systematically investigated. The present study was performed to investigate the hepatic metabolism, metabolite characterization, and toxicological aspects of EQ in salmon during a 2-week depuration after a 12-week feeding period with 18 mg (low), 107 mg (medium), and 1800 mg/kg feed (high). The alteration in gene expressions and catalytic activities of hepatic biotransformation enzymes were studied using real-time polymerase chain reaction with specific primer pairs and by kinetics of two identified hepatic metabolites. Analysis of EQ metabolism was performed using high performance liquid chromatography (HPLC) method and showed the detection of four compounds of which two were quantified, parent EQ and EQ dimer (EQDM). Two metabolites were identified as de-ethylated EQ (DEQ) and quinone imine, but these were not quantified. The concentration of the quantified EQ-related compounds in the liver at day 0 showed a positive linear relationship with measured dietary EQ (R2 = 0.86 and 0.92 for parent EQ and EQDM, respectively). While the low–EQ-feeding group showed a time-specific increase of aryl hydrocarbon receptor (AhR) mRNA expression, the medium-dose group showed decreased AhR mRNA at depuration day 7. Expression of CYP1A1 was decreased during the depuration period. Consumption of dietary EQ produced the expression of CYP3A, glutathione S-transferase (GST), and uridine diphosphate glucuronosyl-transferase (UDPGT) mRNA during the depuration period. A similar pattern of effect was observed for both CYP3A and phase II genes and supports our previous postulation of common regulation of these enzymes by the same inducer, namely EQ metabolites. The increase of CYP3A, UDPGT, and GST gene expressions at day 7 was in accordance with the low concentration of DEQ. The low concentration of putative DEQ may induce the CYP3A with subsequent increase in the biotransformation of EQ into DEQ. The increase in UDPGT may seem to be a synchronizing mechanism required for the excretion of DEQ. The biotransformation of dietary EQ is proven by simultaneous induction of both phase I and II detoxification system in the liver of Atlantic salmon. Therefore, the apparent low concentration of putative DEQ may account for the induced phase I and II detoxifying enzymes at least during depuration. This speculated hypothesis is currently a subject for systematic investigation in our laboratory using in vitro and genomic approaches." @default.
- W2162909529 created "2016-06-24" @default.
- W2162909529 creator A5029156713 @default.
- W2162909529 creator A5074718831 @default.
- W2162909529 creator A5085320289 @default.
- W2162909529 date "2006-06-21" @default.
- W2162909529 modified "2023-10-16" @default.
- W2162909529 title "Hepatic Biotransformation and Metabolite Profile during a 2-Week Depuration Period in Atlantic Salmon Fed Graded Levels of the Synthetic Antioxidant, Ethoxyquin" @default.
- W2162909529 cites W1581414347 @default.
- W2162909529 cites W1900912696 @default.
- W2162909529 cites W1964045671 @default.
- W2162909529 cites W1964582211 @default.
- W2162909529 cites W1964961036 @default.
- W2162909529 cites W1967014487 @default.
- W2162909529 cites W1967388069 @default.
- W2162909529 cites W1977501799 @default.
- W2162909529 cites W1988664425 @default.
- W2162909529 cites W1995085444 @default.
- W2162909529 cites W1999532678 @default.
- W2162909529 cites W2000581994 @default.
- W2162909529 cites W2001773212 @default.
- W2162909529 cites W2002458395 @default.
- W2162909529 cites W2011901424 @default.
- W2162909529 cites W2017750872 @default.
- W2162909529 cites W2020597160 @default.
- W2162909529 cites W2020650111 @default.
- W2162909529 cites W2020703940 @default.
- W2162909529 cites W2021444563 @default.
- W2162909529 cites W2024147885 @default.
- W2162909529 cites W2035000881 @default.
- W2162909529 cites W2035714071 @default.
- W2162909529 cites W2036917320 @default.
- W2162909529 cites W2039791176 @default.
- W2162909529 cites W2042821693 @default.
- W2162909529 cites W2046750894 @default.
- W2162909529 cites W2047111402 @default.
- W2162909529 cites W2049656784 @default.
- W2162909529 cites W2050207944 @default.
- W2162909529 cites W2060410246 @default.
- W2162909529 cites W2064321441 @default.
- W2162909529 cites W2064865184 @default.
- W2162909529 cites W2066439231 @default.
- W2162909529 cites W2068888241 @default.
- W2162909529 cites W2072671524 @default.
- W2162909529 cites W2073462099 @default.
- W2162909529 cites W2074574527 @default.
- W2162909529 cites W2081217084 @default.
- W2162909529 cites W2084462922 @default.
- W2162909529 cites W2089969680 @default.
- W2162909529 cites W2101957365 @default.
- W2162909529 cites W2114756989 @default.
- W2162909529 cites W2126921546 @default.
- W2162909529 cites W2141444226 @default.
- W2162909529 cites W2143630100 @default.
- W2162909529 cites W2154066821 @default.
- W2162909529 cites W2245650492 @default.
- W2162909529 cites W2415186660 @default.
- W2162909529 cites W4293247451 @default.
- W2162909529 cites W4301627752 @default.
- W2162909529 doi "https://doi.org/10.1093/toxsci/kfl044" @default.
- W2162909529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16790489" @default.
- W2162909529 hasPublicationYear "2006" @default.
- W2162909529 type Work @default.
- W2162909529 sameAs 2162909529 @default.
- W2162909529 citedByCount "21" @default.
- W2162909529 countsByYear W21629095292013 @default.
- W2162909529 countsByYear W21629095292015 @default.
- W2162909529 countsByYear W21629095292017 @default.
- W2162909529 countsByYear W21629095292018 @default.
- W2162909529 countsByYear W21629095292019 @default.
- W2162909529 countsByYear W21629095292020 @default.
- W2162909529 countsByYear W21629095292022 @default.
- W2162909529 countsByYear W21629095292023 @default.
- W2162909529 crossrefType "journal-article" @default.
- W2162909529 hasAuthorship W2162909529A5029156713 @default.
- W2162909529 hasAuthorship W2162909529A5074718831 @default.
- W2162909529 hasAuthorship W2162909529A5085320289 @default.
- W2162909529 hasBestOaLocation W21629095291 @default.
- W2162909529 hasConcept C104317684 @default.
- W2162909529 hasConcept C179998833 @default.
- W2162909529 hasConcept C181199279 @default.
- W2162909529 hasConcept C185592680 @default.
- W2162909529 hasConcept C2777477808 @default.
- W2162909529 hasConcept C2777883389 @default.
- W2162909529 hasConcept C2778004101 @default.
- W2162909529 hasConcept C27881333 @default.
- W2162909529 hasConcept C33594762 @default.
- W2162909529 hasConcept C43617362 @default.
- W2162909529 hasConcept C538909803 @default.
- W2162909529 hasConcept C55493867 @default.
- W2162909529 hasConcept C62231903 @default.
- W2162909529 hasConcept C86339819 @default.
- W2162909529 hasConcept C86803240 @default.
- W2162909529 hasConcept C98274493 @default.
- W2162909529 hasConceptScore W2162909529C104317684 @default.
- W2162909529 hasConceptScore W2162909529C179998833 @default.
- W2162909529 hasConceptScore W2162909529C181199279 @default.
- W2162909529 hasConceptScore W2162909529C185592680 @default.