Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163001495> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2163001495 endingPage "927" @default.
- W2163001495 startingPage "921" @default.
- W2163001495 abstract "Tropical forests in many areas of Central and South America experience strong seasonality in climatic variables such as rainfall, solar radiation, wind speed, and relative humidity. Such seasonality is typical of the mangrove forests we study along the Caribbean coast of Panama. Tied to this environmental variation are changes in leaf phenology and physiology that can affect the spectral properties of leaves and thus our ability to discriminate canopies of differing species composition. The goals of this study were two-fold. First, we compared the efficacy of three different classification methods for discriminating mangrove canopies, including a back-propagation, feed-forward neural network classifier with two hidden layers of 24 and 12 neurons (hereafter, BP:24:12), a newly developed clusteringbased neural network classifier (CBNN), and a maximum likelihood classifier (MLC). Comparisons were made with and without added textural information. Our second aim was to compare the absolute and relative discrimination abilities of these methods when applied to images of the same forest acquired in different seasons. Two sets of Ikonos images acquired in February (dry season) and May (early wet season) 2004 were analyzed in this study. When only spectral information was considered, MLC and CBNN discriminated differences in canopy species composition with higher accuracy than the BP:24:12 method. When second-order textural information was also taken into account, CBNN outperformed MLC and presented the best classification accuracy, i.e., kappa value equaled 0.93. Analyses of the wet season (May) image were consistently more accurate in discriminating mangrove canopies of differing species composition than analyses of the dry season (February) image, regardless of the classification method or the inclusion of textural information." @default.
- W2163001495 created "2016-06-24" @default.
- W2163001495 creator A5028327462 @default.
- W2163001495 creator A5031814559 @default.
- W2163001495 creator A5088516099 @default.
- W2163001495 date "2008-07-01" @default.
- W2163001495 modified "2023-10-05" @default.
- W2163001495 title "Neural Network Classification of Mangrove Species from Multi-seasonal Ikonos Imagery" @default.
- W2163001495 cites W1480873903 @default.
- W2163001495 cites W1498436455 @default.
- W2163001495 cites W1978987129 @default.
- W2163001495 cites W1998598901 @default.
- W2163001495 cites W2013485609 @default.
- W2163001495 cites W2029602137 @default.
- W2163001495 cites W2049721427 @default.
- W2163001495 cites W2074513253 @default.
- W2163001495 cites W2079019836 @default.
- W2163001495 cites W2080092916 @default.
- W2163001495 cites W2086422663 @default.
- W2163001495 cites W2094405121 @default.
- W2163001495 cites W2111845801 @default.
- W2163001495 cites W2120700469 @default.
- W2163001495 cites W2127632654 @default.
- W2163001495 cites W2130269771 @default.
- W2163001495 cites W2134721717 @default.
- W2163001495 cites W2144841545 @default.
- W2163001495 cites W2150913843 @default.
- W2163001495 cites W2151426712 @default.
- W2163001495 cites W2152449615 @default.
- W2163001495 cites W2156161791 @default.
- W2163001495 cites W2172009270 @default.
- W2163001495 cites W2175013224 @default.
- W2163001495 cites W2295490662 @default.
- W2163001495 cites W2316659442 @default.
- W2163001495 cites W4236408562 @default.
- W2163001495 cites W4255795797 @default.
- W2163001495 doi "https://doi.org/10.14358/pers.74.7.921" @default.
- W2163001495 hasPublicationYear "2008" @default.
- W2163001495 type Work @default.
- W2163001495 sameAs 2163001495 @default.
- W2163001495 citedByCount "73" @default.
- W2163001495 countsByYear W21630014952012 @default.
- W2163001495 countsByYear W21630014952013 @default.
- W2163001495 countsByYear W21630014952014 @default.
- W2163001495 countsByYear W21630014952015 @default.
- W2163001495 countsByYear W21630014952016 @default.
- W2163001495 countsByYear W21630014952017 @default.
- W2163001495 countsByYear W21630014952018 @default.
- W2163001495 countsByYear W21630014952019 @default.
- W2163001495 countsByYear W21630014952020 @default.
- W2163001495 countsByYear W21630014952021 @default.
- W2163001495 countsByYear W21630014952022 @default.
- W2163001495 countsByYear W21630014952023 @default.
- W2163001495 crossrefType "journal-article" @default.
- W2163001495 hasAuthorship W2163001495A5028327462 @default.
- W2163001495 hasAuthorship W2163001495A5031814559 @default.
- W2163001495 hasAuthorship W2163001495A5088516099 @default.
- W2163001495 hasBestOaLocation W21630014951 @default.
- W2163001495 hasConcept C205649164 @default.
- W2163001495 hasConcept C2778102629 @default.
- W2163001495 hasConcept C505870484 @default.
- W2163001495 hasConcept C58640448 @default.
- W2163001495 hasConcept C62649853 @default.
- W2163001495 hasConcept C68874143 @default.
- W2163001495 hasConcept C86803240 @default.
- W2163001495 hasConceptScore W2163001495C205649164 @default.
- W2163001495 hasConceptScore W2163001495C2778102629 @default.
- W2163001495 hasConceptScore W2163001495C505870484 @default.
- W2163001495 hasConceptScore W2163001495C58640448 @default.
- W2163001495 hasConceptScore W2163001495C62649853 @default.
- W2163001495 hasConceptScore W2163001495C68874143 @default.
- W2163001495 hasConceptScore W2163001495C86803240 @default.
- W2163001495 hasIssue "7" @default.
- W2163001495 hasLocation W21630014951 @default.
- W2163001495 hasOpenAccess W2163001495 @default.
- W2163001495 hasPrimaryLocation W21630014951 @default.
- W2163001495 hasRelatedWork W1987458606 @default.
- W2163001495 hasRelatedWork W2025444668 @default.
- W2163001495 hasRelatedWork W2143289805 @default.
- W2163001495 hasRelatedWork W2283421407 @default.
- W2163001495 hasRelatedWork W2293958724 @default.
- W2163001495 hasRelatedWork W2362105998 @default.
- W2163001495 hasRelatedWork W2373733103 @default.
- W2163001495 hasRelatedWork W2740944197 @default.
- W2163001495 hasRelatedWork W28995522 @default.
- W2163001495 hasRelatedWork W603675201 @default.
- W2163001495 hasVolume "74" @default.
- W2163001495 isParatext "false" @default.
- W2163001495 isRetracted "false" @default.
- W2163001495 magId "2163001495" @default.
- W2163001495 workType "article" @default.