Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163204379> ?p ?o ?g. }
- W2163204379 endingPage "214" @default.
- W2163204379 startingPage "211" @default.
- W2163204379 abstract "Ultracold atomic gases in optical lattices potentially offer simulations of condensed-matter phenomena beyond what theory and computations can access; compensated optical lattice techniques applied to the Hubbard model now enable unprecedented low temperatures to be reached for fermions — only 1.4 times that of the antiferromagnetic phase transition, approaching the limits of present modelling techniques. Ultracold atomic gases in optical lattices offer the possibility of simulating condensed-matter phenomena beyond what theory and computations can access. This study applies compensated optical lattice techniques and succeeds in reaching unprecedented temperatures, only 1.4 times the temperature of the antiferromagnetic phase transition, during the simulation of the Hubbard model. The authors measure the exact temperatures using a light-scattering method. In this temperature regime, the system is very close to the limit of what the best theoretical and numerical techniques are capable of modelling. Further improvements of the compensated lattice technique may lead to even lower temperatures, which might give access to other intriguing condensed-matter phenomena such as d-wave superconductivity. Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity1. The Hubbard model—a simplified representation of fermions moving on a periodic lattice—is thought to describe the essential details of copper oxide superconductivity2. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state. Optical lattices filled with a two-spin-component Fermi gas of ultracold atoms can faithfully realize the Hubbard model with readily tunable parameters, and thus provide a platform for the systematic exploration of its phase diagram3,4. Realization of strongly correlated phases, however, has been hindered by the need to cool the atoms to temperatures as low as the magnetic exchange energy, and also by the lack of reliable thermometry5. Here we demonstrate spin-sensitive Bragg scattering of light to measure AFM spin correlations in a realization of the three-dimensional Hubbard model at temperatures down to 1.4 times that of the AFM phase transition. This temperature regime is beyond the range of validity of a simple high-temperature series expansion, which brings our experiment close to the limit of the capabilities of current numerical techniques, particularly at metallic densities. We reach these low temperatures using a compensated optical lattice technique6, in which the confinement of each lattice beam is compensated by a blue-detuned laser beam. The temperature of the atoms in the lattice is deduced by comparing the light scattering to determinant quantum Monte Carlo simulations7 and numerical linked-cluster expansion8 calculations. Further refinement of the compensated lattice may produce even lower temperatures which, along with light scattering thermometry, would open avenues for producing and characterizing other novel quantum states of matter, such as the pseudogap regime and correlated metallic states of the two-dimensional Hubbard model." @default.
- W2163204379 created "2016-06-24" @default.
- W2163204379 creator A5005625223 @default.
- W2163204379 creator A5013912096 @default.
- W2163204379 creator A5022671400 @default.
- W2163204379 creator A5028549002 @default.
- W2163204379 creator A5044257744 @default.
- W2163204379 creator A5044671824 @default.
- W2163204379 creator A5059171328 @default.
- W2163204379 creator A5069567119 @default.
- W2163204379 creator A5075311043 @default.
- W2163204379 creator A5076473988 @default.
- W2163204379 date "2015-02-23" @default.
- W2163204379 modified "2023-10-16" @default.
- W2163204379 title "Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms" @default.
- W2163204379 cites W1520809706 @default.
- W2163204379 cites W1561748652 @default.
- W2163204379 cites W1754610373 @default.
- W2163204379 cites W1969461013 @default.
- W2163204379 cites W1973663126 @default.
- W2163204379 cites W1973875407 @default.
- W2163204379 cites W1978284337 @default.
- W2163204379 cites W1979308046 @default.
- W2163204379 cites W1979997369 @default.
- W2163204379 cites W1982431210 @default.
- W2163204379 cites W1982598496 @default.
- W2163204379 cites W1983702383 @default.
- W2163204379 cites W1991583534 @default.
- W2163204379 cites W2004142192 @default.
- W2163204379 cites W2006051991 @default.
- W2163204379 cites W2019407350 @default.
- W2163204379 cites W2021546324 @default.
- W2163204379 cites W2021655218 @default.
- W2163204379 cites W2035967444 @default.
- W2163204379 cites W2049961383 @default.
- W2163204379 cites W2051029549 @default.
- W2163204379 cites W2054579509 @default.
- W2163204379 cites W2070358122 @default.
- W2163204379 cites W2073665258 @default.
- W2163204379 cites W2079956199 @default.
- W2163204379 cites W2105221346 @default.
- W2163204379 cites W2124602313 @default.
- W2163204379 cites W2131226241 @default.
- W2163204379 cites W2132778344 @default.
- W2163204379 cites W2136112092 @default.
- W2163204379 cites W2139475450 @default.
- W2163204379 cites W2167977891 @default.
- W2163204379 cites W2172568165 @default.
- W2163204379 cites W3100448746 @default.
- W2163204379 cites W3100601456 @default.
- W2163204379 doi "https://doi.org/10.1038/nature14223" @default.
- W2163204379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25707803" @default.
- W2163204379 hasPublicationYear "2015" @default.
- W2163204379 type Work @default.
- W2163204379 sameAs 2163204379 @default.
- W2163204379 citedByCount "314" @default.
- W2163204379 countsByYear W21632043792015 @default.
- W2163204379 countsByYear W21632043792016 @default.
- W2163204379 countsByYear W21632043792017 @default.
- W2163204379 countsByYear W21632043792018 @default.
- W2163204379 countsByYear W21632043792019 @default.
- W2163204379 countsByYear W21632043792020 @default.
- W2163204379 countsByYear W21632043792021 @default.
- W2163204379 countsByYear W21632043792022 @default.
- W2163204379 countsByYear W21632043792023 @default.
- W2163204379 crossrefType "journal-article" @default.
- W2163204379 hasAuthorship W2163204379A5005625223 @default.
- W2163204379 hasAuthorship W2163204379A5013912096 @default.
- W2163204379 hasAuthorship W2163204379A5022671400 @default.
- W2163204379 hasAuthorship W2163204379A5028549002 @default.
- W2163204379 hasAuthorship W2163204379A5044257744 @default.
- W2163204379 hasAuthorship W2163204379A5044671824 @default.
- W2163204379 hasAuthorship W2163204379A5059171328 @default.
- W2163204379 hasAuthorship W2163204379A5069567119 @default.
- W2163204379 hasAuthorship W2163204379A5075311043 @default.
- W2163204379 hasAuthorship W2163204379A5076473988 @default.
- W2163204379 hasBestOaLocation W21632043792 @default.
- W2163204379 hasConcept C106074065 @default.
- W2163204379 hasConcept C111776688 @default.
- W2163204379 hasConcept C121332964 @default.
- W2163204379 hasConcept C136766821 @default.
- W2163204379 hasConcept C155355069 @default.
- W2163204379 hasConcept C191486275 @default.
- W2163204379 hasConcept C24890656 @default.
- W2163204379 hasConcept C25536358 @default.
- W2163204379 hasConcept C26873012 @default.
- W2163204379 hasConcept C2781204021 @default.
- W2163204379 hasConcept C52233224 @default.
- W2163204379 hasConcept C54101563 @default.
- W2163204379 hasConcept C62520636 @default.
- W2163204379 hasConcept C69523127 @default.
- W2163204379 hasConcept C84114770 @default.
- W2163204379 hasConcept C93751859 @default.
- W2163204379 hasConceptScore W2163204379C106074065 @default.
- W2163204379 hasConceptScore W2163204379C111776688 @default.
- W2163204379 hasConceptScore W2163204379C121332964 @default.
- W2163204379 hasConceptScore W2163204379C136766821 @default.
- W2163204379 hasConceptScore W2163204379C155355069 @default.