Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163318056> ?p ?o ?g. }
- W2163318056 endingPage "177" @default.
- W2163318056 startingPage "161" @default.
- W2163318056 abstract "A conjugate and conditional conjugate Bayesian analysis is presented for bi-directed discrete graphical models, which are used to describe and estimate marginal associations between categorical variables. To achieve this, each bi-directed graph is re-expressed by a Markov equivalent, over the observed margin, directed acyclic graph (DAG). This DAG equivalent model is obtained using the same vertex set or with the addition of some latent variables when required. It is characterised by a minimal set of marginal and conditional probability parameters. Hence compatible priors based on products of Dirichlet distributions can be applied. For models with DAG representation on the same vertex set, the posterior distribution and the marginal likelihood is analytically available, while for the remaining ones a data augmentation scheme introducing additional latent variables is required. For the latter, the marginal likelihood is estimated using Chib’s estimator. Additional implementation details including identifiability of such models are discussed. Moreover, analytic details concerning the computation of the posterior distributions of the marginal log-linear parameters are provided. The computation is achieved via a simple transformation of the simulated values of the probability parameters of the bi-directed model under study. The marginal log-linear parameterisation provides a straightforward interpretation in terms of log-odds ratios on specific marginals quantifying the associations between variables involved in the corresponding marginal. The proposed methodology is illustrated using a popular 4-way dataset." @default.
- W2163318056 created "2016-06-24" @default.
- W2163318056 creator A5021033859 @default.
- W2163318056 creator A5062615685 @default.
- W2163318056 date "2013-10-01" @default.
- W2163318056 modified "2023-10-17" @default.
- W2163318056 title "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence" @default.
- W2163318056 cites W1517993545 @default.
- W2163318056 cites W1964356176 @default.
- W2163318056 cites W1965733286 @default.
- W2163318056 cites W1994230777 @default.
- W2163318056 cites W2015749074 @default.
- W2163318056 cites W2026870540 @default.
- W2163318056 cites W2027445478 @default.
- W2163318056 cites W2030229367 @default.
- W2163318056 cites W2035756456 @default.
- W2163318056 cites W2041542605 @default.
- W2163318056 cites W2042287795 @default.
- W2163318056 cites W2044215181 @default.
- W2163318056 cites W2060512257 @default.
- W2163318056 cites W2063068713 @default.
- W2163318056 cites W2065222687 @default.
- W2163318056 cites W2066967577 @default.
- W2163318056 cites W2073947316 @default.
- W2163318056 cites W2079352458 @default.
- W2163318056 cites W2084970779 @default.
- W2163318056 cites W2087101057 @default.
- W2163318056 cites W2099874950 @default.
- W2163318056 cites W2106706098 @default.
- W2163318056 cites W2110656936 @default.
- W2163318056 cites W2147795518 @default.
- W2163318056 cites W2914447735 @default.
- W2163318056 cites W2962752536 @default.
- W2163318056 cites W3098657762 @default.
- W2163318056 cites W3100744870 @default.
- W2163318056 cites W3102998992 @default.
- W2163318056 cites W3106284700 @default.
- W2163318056 doi "https://doi.org/10.1016/j.csda.2013.04.005" @default.
- W2163318056 hasPublicationYear "2013" @default.
- W2163318056 type Work @default.
- W2163318056 sameAs 2163318056 @default.
- W2163318056 citedByCount "8" @default.
- W2163318056 countsByYear W21633180562013 @default.
- W2163318056 countsByYear W21633180562015 @default.
- W2163318056 countsByYear W21633180562018 @default.
- W2163318056 countsByYear W21633180562019 @default.
- W2163318056 countsByYear W21633180562021 @default.
- W2163318056 crossrefType "journal-article" @default.
- W2163318056 hasAuthorship W2163318056A5021033859 @default.
- W2163318056 hasAuthorship W2163318056A5062615685 @default.
- W2163318056 hasBestOaLocation W21633180562 @default.
- W2163318056 hasConcept C105795698 @default.
- W2163318056 hasConcept C107673813 @default.
- W2163318056 hasConcept C11413529 @default.
- W2163318056 hasConcept C122123141 @default.
- W2163318056 hasConcept C122770356 @default.
- W2163318056 hasConcept C134306372 @default.
- W2163318056 hasConcept C152877465 @default.
- W2163318056 hasConcept C155846161 @default.
- W2163318056 hasConcept C165216359 @default.
- W2163318056 hasConcept C169214877 @default.
- W2163318056 hasConcept C182310444 @default.
- W2163318056 hasConcept C197656967 @default.
- W2163318056 hasConcept C26004113 @default.
- W2163318056 hasConcept C28826006 @default.
- W2163318056 hasConcept C33923547 @default.
- W2163318056 hasConcept C43555835 @default.
- W2163318056 hasConcept C51167844 @default.
- W2163318056 hasConcept C57830394 @default.
- W2163318056 hasConcept C74197172 @default.
- W2163318056 hasConcept C79772020 @default.
- W2163318056 hasConcept C95923904 @default.
- W2163318056 hasConceptScore W2163318056C105795698 @default.
- W2163318056 hasConceptScore W2163318056C107673813 @default.
- W2163318056 hasConceptScore W2163318056C11413529 @default.
- W2163318056 hasConceptScore W2163318056C122123141 @default.
- W2163318056 hasConceptScore W2163318056C122770356 @default.
- W2163318056 hasConceptScore W2163318056C134306372 @default.
- W2163318056 hasConceptScore W2163318056C152877465 @default.
- W2163318056 hasConceptScore W2163318056C155846161 @default.
- W2163318056 hasConceptScore W2163318056C165216359 @default.
- W2163318056 hasConceptScore W2163318056C169214877 @default.
- W2163318056 hasConceptScore W2163318056C182310444 @default.
- W2163318056 hasConceptScore W2163318056C197656967 @default.
- W2163318056 hasConceptScore W2163318056C26004113 @default.
- W2163318056 hasConceptScore W2163318056C28826006 @default.
- W2163318056 hasConceptScore W2163318056C33923547 @default.
- W2163318056 hasConceptScore W2163318056C43555835 @default.
- W2163318056 hasConceptScore W2163318056C51167844 @default.
- W2163318056 hasConceptScore W2163318056C57830394 @default.
- W2163318056 hasConceptScore W2163318056C74197172 @default.
- W2163318056 hasConceptScore W2163318056C79772020 @default.
- W2163318056 hasConceptScore W2163318056C95923904 @default.
- W2163318056 hasLocation W21633180561 @default.
- W2163318056 hasLocation W21633180562 @default.
- W2163318056 hasLocation W21633180563 @default.
- W2163318056 hasOpenAccess W2163318056 @default.
- W2163318056 hasPrimaryLocation W21633180561 @default.