Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163709572> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2163709572 abstract "Many autonomous tasks can be considered as having to satisfy multiple goals simultaneously. In particular, Autonomous Vehicle (AV) navigation can be considered as a task having to satisfy at least two goals in an environment. The first goal is to plan a path for an agent to move from an origin to a destination that takes the shortest number of navigation steps. If the environment is static and the destination is stationary, then this shortest path is constant and can be planned in advance if the environment is known a priori, or estimated as the agent explores the environment if it is initially unknown. If the environment or the destination is dynamically changing, then the shortest path is no longer constant. This problem may still be considered as a path planning issue if the environment at each sampled time is known. However, the problem is more appropriately dealt with by incorporating a second goal that aims to avoid collisions between the agent and its neighboring obstacles while executing an overall shortest path strategy towards the destination. The collision avoidance (CA) problem has been well studied in the context of static known or unknown environments (Latombe, 1991; Ge & Cui, 2000; Oriolo et al., 1998; Ye et al., 2003). In the case of dynamic environments (DE) (Stentz, 1994; Stentz, 1995; Yang & Meng, 2003; Minguez & Minguez, 2004; Minguez, 2005), the focus at present is on dynamic environment (DE) that is slowly changing with fairly low obstacle density. In theory, if the agent samples the environment fast enough, any environment would appear as a static environment and the navigation problem can be solved using existing solutions for static environments. In practice, this condition is difficult to achieve particularly when obstacles are moving at speeds higher than the agent or sampling rate is low. To deal with this situation, an obvious approach is to explicitly consider obstacle motions. Fiorini & Shiller (Fiorini & Shiller, 1998) proposed the concept of Velocity Obstacles that enables obstacle motions between two time steps to be considered in their formulation. Like other similar algorithms (Mucientes e al., 2001; Yamamoto et al., 2001; Feng et al., 2004; Qu et al., 2004), they assumed that objects move in a constant velocity. Shiller et al. (Shiller et al., 2001; Large et al., 2002) further proposed the non-linear velocity obstacle concept which assumes that obstacles can have variable speed. Moreover, they described the obstacles’ trajectories using circular approximation. Although it may not always capture the correct movement of obstacles, it is an attempt to predict obstacle motions between two time steps. Similarly, Zhu’s hidden Markov model (Zhu, 1991) and Miura’s probabilistic model (Miura et al., 1999) also attempted the same. The idea of considering obstacles motion within two time steps explicitly proves to be vital in enhancing the agent’s CA ability in reality. Motivated by" @default.
- W2163709572 created "2016-06-24" @default.
- W2163709572 creator A5009608172 @default.
- W2163709572 creator A5077833147 @default.
- W2163709572 date "2011-01-14" @default.
- W2163709572 modified "2023-10-01" @default.
- W2163709572 title "DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment" @default.
- W2163709572 cites W101508493 @default.
- W2163709572 cites W1515559401 @default.
- W2163709572 cites W1521003796 @default.
- W2163709572 cites W1587583689 @default.
- W2163709572 cites W1612579644 @default.
- W2163709572 cites W1849208822 @default.
- W2163709572 cites W1931792391 @default.
- W2163709572 cites W1973039793 @default.
- W2163709572 cites W1996485761 @default.
- W2163709572 cites W1997477668 @default.
- W2163709572 cites W2002440441 @default.
- W2163709572 cites W2071957557 @default.
- W2163709572 cites W2075834065 @default.
- W2163709572 cites W2079550246 @default.
- W2163709572 cites W2095617440 @default.
- W2163709572 cites W2098519927 @default.
- W2163709572 cites W2099144379 @default.
- W2163709572 cites W2104602264 @default.
- W2163709572 cites W2106667095 @default.
- W2163709572 cites W2107726111 @default.
- W2163709572 cites W2116556015 @default.
- W2163709572 cites W2119567691 @default.
- W2163709572 cites W2120794503 @default.
- W2163709572 cites W2120846115 @default.
- W2163709572 cites W2121682629 @default.
- W2163709572 cites W2121863487 @default.
- W2163709572 cites W2122439876 @default.
- W2163709572 cites W2134779831 @default.
- W2163709572 cites W2138964046 @default.
- W2163709572 cites W2143559295 @default.
- W2163709572 cites W2146089494 @default.
- W2163709572 cites W2150478139 @default.
- W2163709572 cites W2150884987 @default.
- W2163709572 cites W2151908411 @default.
- W2163709572 cites W2152195964 @default.
- W2163709572 cites W2155757393 @default.
- W2163709572 cites W2156142530 @default.
- W2163709572 cites W2156373593 @default.
- W2163709572 cites W2158334497 @default.
- W2163709572 cites W2160410737 @default.
- W2163709572 cites W2165852544 @default.
- W2163709572 cites W2167011086 @default.
- W2163709572 cites W2168342951 @default.
- W2163709572 cites W2170129176 @default.
- W2163709572 cites W2170607316 @default.
- W2163709572 cites W2242368170 @default.
- W2163709572 cites W2911283634 @default.
- W2163709572 cites W3092861125 @default.
- W2163709572 doi "https://doi.org/10.5772/13743" @default.
- W2163709572 hasPublicationYear "2011" @default.
- W2163709572 type Work @default.
- W2163709572 sameAs 2163709572 @default.
- W2163709572 citedByCount "0" @default.
- W2163709572 crossrefType "book-chapter" @default.
- W2163709572 hasAuthorship W2163709572A5009608172 @default.
- W2163709572 hasAuthorship W2163709572A5077833147 @default.
- W2163709572 hasBestOaLocation W21637095721 @default.
- W2163709572 hasConcept C107457646 @default.
- W2163709572 hasConcept C127413603 @default.
- W2163709572 hasConcept C201995342 @default.
- W2163709572 hasConcept C41008148 @default.
- W2163709572 hasConceptScore W2163709572C107457646 @default.
- W2163709572 hasConceptScore W2163709572C127413603 @default.
- W2163709572 hasConceptScore W2163709572C201995342 @default.
- W2163709572 hasConceptScore W2163709572C41008148 @default.
- W2163709572 hasLocation W21637095721 @default.
- W2163709572 hasLocation W21637095722 @default.
- W2163709572 hasOpenAccess W2163709572 @default.
- W2163709572 hasPrimaryLocation W21637095721 @default.
- W2163709572 hasRelatedWork W110311947 @default.
- W2163709572 hasRelatedWork W2051154247 @default.
- W2163709572 hasRelatedWork W2076610045 @default.
- W2163709572 hasRelatedWork W2278205256 @default.
- W2163709572 hasRelatedWork W2883555950 @default.
- W2163709572 hasRelatedWork W3005892291 @default.
- W2163709572 hasRelatedWork W4244299974 @default.
- W2163709572 hasRelatedWork W4246426965 @default.
- W2163709572 hasRelatedWork W2505387022 @default.
- W2163709572 hasRelatedWork W3106945349 @default.
- W2163709572 isParatext "false" @default.
- W2163709572 isRetracted "false" @default.
- W2163709572 magId "2163709572" @default.
- W2163709572 workType "book-chapter" @default.