Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163776871> ?p ?o ?g. }
- W2163776871 endingPage "46" @default.
- W2163776871 startingPage "1" @default.
- W2163776871 abstract "Abstract The Boltzmann equation provides a rigorous theoretical framework to study dilute gas flows at arbitrary degrees of rarefaction. Asymptotic methods have been applied to steady flows, enabling the development of analytical formulae. For unsteady (oscillatory) flows, two important limits have been studied: (i) at low oscillation frequency and small mean free path, slip models have been derived; and (ii) at high oscillation frequency and large mean free path, the leading-order dynamics are free-molecular. In this article, the complementary case of small mean free path and high oscillation frequency is examined in detail. All walls are solid and of arbitrary smooth shape. We perform a matched asymptotic expansion of the unsteady linearized Boltzmann–BGK equation in the small parameter $nu / omega $ , where $nu $ is the collision frequency of gas particles and $omega $ is the characteristic oscillation frequency of the flow. Critically, an algebraic expression is derived for the perturbed mass distribution function throughout the bulk of the gas away from any walls, at all orders in the frequency ratio $nu / omega $ . This is supplemented by a boundary layer correction defined by a set of first-order differential equations. This system is solved explicitly and in complete generality. We thus provide analytical expressions up to first order in the frequency ratio, for the density, temperature, mean velocity and stress tensor of the gas, in terms of the temperature and mean velocity of the wall, and the applied body force. In stark contrast to other asymptotic regimes, these explicit formulae eliminate the need to solve a differential equation for a body of arbitrary geometry. To illustrate the utility of these results, we study the oscillatory thermal creep problem for which we find a tangential boundary layer flow arises at first order in the frequency ratio." @default.
- W2163776871 created "2016-06-24" @default.
- W2163776871 creator A5035578805 @default.
- W2163776871 creator A5057049602 @default.
- W2163776871 date "2013-07-19" @default.
- W2163776871 modified "2023-09-27" @default.
- W2163776871 title "High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation" @default.
- W2163776871 cites W1538135945 @default.
- W2163776871 cites W1645527346 @default.
- W2163776871 cites W1964359487 @default.
- W2163776871 cites W1964864151 @default.
- W2163776871 cites W1965750400 @default.
- W2163776871 cites W1966822993 @default.
- W2163776871 cites W1976078208 @default.
- W2163776871 cites W1976675184 @default.
- W2163776871 cites W1978032173 @default.
- W2163776871 cites W1988930130 @default.
- W2163776871 cites W1989622286 @default.
- W2163776871 cites W1996964194 @default.
- W2163776871 cites W2002099783 @default.
- W2163776871 cites W2002198986 @default.
- W2163776871 cites W2003567649 @default.
- W2163776871 cites W2004665669 @default.
- W2163776871 cites W2007947528 @default.
- W2163776871 cites W2008003005 @default.
- W2163776871 cites W2008340631 @default.
- W2163776871 cites W2009951639 @default.
- W2163776871 cites W2011474637 @default.
- W2163776871 cites W2013318238 @default.
- W2163776871 cites W2017488890 @default.
- W2163776871 cites W2019645917 @default.
- W2163776871 cites W2021078108 @default.
- W2163776871 cites W2021129487 @default.
- W2163776871 cites W2021150778 @default.
- W2163776871 cites W2023220613 @default.
- W2163776871 cites W2024894802 @default.
- W2163776871 cites W2025400410 @default.
- W2163776871 cites W2040654032 @default.
- W2163776871 cites W2041246127 @default.
- W2163776871 cites W2041282725 @default.
- W2163776871 cites W2041627527 @default.
- W2163776871 cites W2045485653 @default.
- W2163776871 cites W2052634374 @default.
- W2163776871 cites W2057151611 @default.
- W2163776871 cites W2066060292 @default.
- W2163776871 cites W2066334248 @default.
- W2163776871 cites W2066795551 @default.
- W2163776871 cites W2066974927 @default.
- W2163776871 cites W2067442146 @default.
- W2163776871 cites W2067947415 @default.
- W2163776871 cites W2068102804 @default.
- W2163776871 cites W2072291622 @default.
- W2163776871 cites W2074612609 @default.
- W2163776871 cites W2074648533 @default.
- W2163776871 cites W2076419910 @default.
- W2163776871 cites W2078237103 @default.
- W2163776871 cites W2084844714 @default.
- W2163776871 cites W2091867396 @default.
- W2163776871 cites W2092338853 @default.
- W2163776871 cites W2092962797 @default.
- W2163776871 cites W2096529920 @default.
- W2163776871 cites W2100201447 @default.
- W2163776871 cites W2127786991 @default.
- W2163776871 cites W2137238698 @default.
- W2163776871 cites W2387211627 @default.
- W2163776871 cites W4236974991 @default.
- W2163776871 cites W4240205620 @default.
- W2163776871 cites W4251108025 @default.
- W2163776871 cites W4301244162 @default.
- W2163776871 doi "https://doi.org/10.1017/jfm.2013.281" @default.
- W2163776871 hasPublicationYear "2013" @default.
- W2163776871 type Work @default.
- W2163776871 sameAs 2163776871 @default.
- W2163776871 citedByCount "13" @default.
- W2163776871 countsByYear W21637768712014 @default.
- W2163776871 countsByYear W21637768712016 @default.
- W2163776871 countsByYear W21637768712017 @default.
- W2163776871 countsByYear W21637768712018 @default.
- W2163776871 countsByYear W21637768712020 @default.
- W2163776871 countsByYear W21637768712021 @default.
- W2163776871 crossrefType "journal-article" @default.
- W2163776871 hasAuthorship W2163776871A5035578805 @default.
- W2163776871 hasAuthorship W2163776871A5057049602 @default.
- W2163776871 hasBestOaLocation W21637768712 @default.
- W2163776871 hasConcept C112951337 @default.
- W2163776871 hasConcept C121332964 @default.
- W2163776871 hasConcept C134306372 @default.
- W2163776871 hasConcept C165995430 @default.
- W2163776871 hasConcept C168986899 @default.
- W2163776871 hasConcept C182310444 @default.
- W2163776871 hasConcept C186603090 @default.
- W2163776871 hasConcept C191486275 @default.
- W2163776871 hasConcept C2778439541 @default.
- W2163776871 hasConcept C2779557605 @default.
- W2163776871 hasConcept C33923547 @default.
- W2163776871 hasConcept C35304006 @default.
- W2163776871 hasConcept C54355233 @default.
- W2163776871 hasConcept C57879066 @default.