Matches in SemOpenAlex for { <https://semopenalex.org/work/W2163858301> ?p ?o ?g. }
- W2163858301 endingPage "169" @default.
- W2163858301 startingPage "135" @default.
- W2163858301 abstract "Iron isotope compositions of low-metamorphic grade samples of Archean–Paleoproterozoic sedimentary rocks obtained from fresh drill core from the Kaapvaal Craton in South Africa and from the Pilbara Craton in Australia vary by ~ 3‰ in 56Fe/54Fe ratios, reflecting a variety of weathering and diagenetic processes. Depositional ages for the 120 samples studied range from 3.3 to 2.2 Ga, and Fe, C, and S contents define several compositional groups, including samples rich in Fe, organic carbon, carbonate, and sulfide. The δ56Fe values for low-Corg, low-Ccarb, and low-S sedimentary rocks are close to 0‰, the average of igneous rocks. This range is essentially the same as that of Corg-poor late Cenozoic loess, aerosol, river loads, and marine sediments and those of Corg-poor Phanerozoic–Proterozoic shales. That these δ56Fe values are the same as those of igneous rocks suggests that Fe has behaved conservatively in bulk sediments during sedimentary transport, diagenesis, and lithification since the Archean. These observations indicate that, if atmospheric O2 contents rose dramatically between 2.4 and 2.2 Ga, as proposed by many workers, such a rise did not produce a significant change in the bulk Fe budget of the terrestrial sedimentary system. If the Archean atmosphere was anoxic and Fe was lost from bedrock during soil formation, any isotopic fractionation between aqueous ferrous Fe (Feaq2+) and Fe-bearing minerals must have been negligible. In contrast, if the Archean atmosphere was oxic, Fe would have been retained as Fe3+ hydroxides during weathering as it is today, which would produce minimal net isotopic fractionation in bulk detrital sediments. Siderite-rich samples have δ56Fe values of − 0.5 ± 0.5‰, and experimentally determined Feaq2+-siderite fractionation factors suggest that these rocks formed from Feaq2+ that had similar or slightly higher δ56Fe values. The δ56Fe values calculated for Feaq2+ overlaps those of modern submarine hydrothermal fluids, but it is also possible that Feaq2+ had δ56Fe values higher than those of modern hydrothermal fluids, depending upon the Feaq2+–Fe carbonate fractionation factor that is used. In contrast, Corg-rich samples and magnetite-rich samples have strongly negative δ56Fe values, generally between − 2.3‰ and − 1.0‰, and available fluid–mineral fractionation factors suggest that the Fe-bearing minerals siderite and magnetite in these rocks formed in the presence of Feaq2+ that had very low δ56Fe values, between − 3‰ and − 1‰. Reduction of Fe3+ hydroxide by sulfide, precipitation of sulfide minerals, or incongruent dissolution of silicate minerals are considered unlikely means to produce significant quantities of low-δ56Fe Feaq2+. We interpret microbial dissimilatory Fe3+ reduction (DIR) as the best explanation for producing such low δ56Fe values for Feaq2+, and our results suggest that DIR was a significant form of respiration since at least 2.9 Ga." @default.
- W2163858301 created "2016-06-24" @default.
- W2163858301 creator A5000007230 @default.
- W2163858301 creator A5032863816 @default.
- W2163858301 creator A5037244913 @default.
- W2163858301 creator A5076151390 @default.
- W2163858301 date "2005-05-01" @default.
- W2163858301 modified "2023-10-16" @default.
- W2163858301 title "Biogeochemical cycling of iron in the Archean–Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons" @default.
- W2163858301 cites W1480659684 @default.
- W2163858301 cites W1544674137 @default.
- W2163858301 cites W1631820701 @default.
- W2163858301 cites W1963524615 @default.
- W2163858301 cites W1963581856 @default.
- W2163858301 cites W1965628007 @default.
- W2163858301 cites W1965724422 @default.
- W2163858301 cites W1965960661 @default.
- W2163858301 cites W1966089812 @default.
- W2163858301 cites W1969594792 @default.
- W2163858301 cites W1969846781 @default.
- W2163858301 cites W1974701082 @default.
- W2163858301 cites W1975665084 @default.
- W2163858301 cites W1976306155 @default.
- W2163858301 cites W1976687399 @default.
- W2163858301 cites W1978052340 @default.
- W2163858301 cites W1984854172 @default.
- W2163858301 cites W1986026744 @default.
- W2163858301 cites W1987716298 @default.
- W2163858301 cites W1988551870 @default.
- W2163858301 cites W1989662389 @default.
- W2163858301 cites W1992615119 @default.
- W2163858301 cites W1996339982 @default.
- W2163858301 cites W1999057913 @default.
- W2163858301 cites W2013351001 @default.
- W2163858301 cites W2014221208 @default.
- W2163858301 cites W2015171931 @default.
- W2163858301 cites W2021252234 @default.
- W2163858301 cites W2022071420 @default.
- W2163858301 cites W2023393594 @default.
- W2163858301 cites W2027143279 @default.
- W2163858301 cites W2027706871 @default.
- W2163858301 cites W2027844136 @default.
- W2163858301 cites W2029025852 @default.
- W2163858301 cites W2032247127 @default.
- W2163858301 cites W2035866696 @default.
- W2163858301 cites W2037923444 @default.
- W2163858301 cites W2039480109 @default.
- W2163858301 cites W2042760382 @default.
- W2163858301 cites W2046448804 @default.
- W2163858301 cites W2047397895 @default.
- W2163858301 cites W2050426306 @default.
- W2163858301 cites W2052099565 @default.
- W2163858301 cites W2058528219 @default.
- W2163858301 cites W2061338944 @default.
- W2163858301 cites W2065938558 @default.
- W2163858301 cites W2066340240 @default.
- W2163858301 cites W2067099347 @default.
- W2163858301 cites W2068593151 @default.
- W2163858301 cites W2069170026 @default.
- W2163858301 cites W2070396519 @default.
- W2163858301 cites W2070567272 @default.
- W2163858301 cites W2071983566 @default.
- W2163858301 cites W2074797379 @default.
- W2163858301 cites W2081902519 @default.
- W2163858301 cites W2082070875 @default.
- W2163858301 cites W2089351169 @default.
- W2163858301 cites W2092497959 @default.
- W2163858301 cites W2092553727 @default.
- W2163858301 cites W2093015097 @default.
- W2163858301 cites W2107109600 @default.
- W2163858301 cites W2109857639 @default.
- W2163858301 cites W2113090010 @default.
- W2163858301 cites W2114891999 @default.
- W2163858301 cites W2120945229 @default.
- W2163858301 cites W2121080052 @default.
- W2163858301 cites W2128185490 @default.
- W2163858301 cites W2130033066 @default.
- W2163858301 cites W2137340366 @default.
- W2163858301 cites W2148346745 @default.
- W2163858301 cites W2150738554 @default.
- W2163858301 cites W2150797990 @default.
- W2163858301 cites W2153587034 @default.
- W2163858301 cites W2155256780 @default.
- W2163858301 cites W2156107051 @default.
- W2163858301 cites W2170926131 @default.
- W2163858301 cites W2173171001 @default.
- W2163858301 cites W4236010733 @default.
- W2163858301 doi "https://doi.org/10.1016/j.chemgeo.2005.01.020" @default.
- W2163858301 hasPublicationYear "2005" @default.
- W2163858301 type Work @default.
- W2163858301 sameAs 2163858301 @default.
- W2163858301 citedByCount "150" @default.
- W2163858301 countsByYear W21638583012012 @default.
- W2163858301 countsByYear W21638583012013 @default.
- W2163858301 countsByYear W21638583012014 @default.
- W2163858301 countsByYear W21638583012015 @default.
- W2163858301 countsByYear W21638583012016 @default.
- W2163858301 countsByYear W21638583012017 @default.