Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164141749> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2164141749 endingPage "80" @default.
- W2164141749 startingPage "73" @default.
- W2164141749 abstract "Abstract This paper describes an application of three artificial intelligence (AI) methods to estimate tool wear in lathe turning. The first two are “conventional” AI methods—the feed forward back propagation neural network and the fuzzy decision support system. The third is a new artificial neural network based-fuzzy inference system with moving consequents in if–then rules. Tool wear estimation is based on the measurement of cutting force components. This paper discusses a comparison of usability of these methods in practice." @default.
- W2164141749 created "2016-06-24" @default.
- W2164141749 creator A5028753134 @default.
- W2164141749 creator A5044492083 @default.
- W2164141749 creator A5059782785 @default.
- W2164141749 creator A5075946740 @default.
- W2164141749 date "2002-02-01" @default.
- W2164141749 modified "2023-10-16" @default.
- W2164141749 title "Tool condition monitoring using artificial intelligence methods" @default.
- W2164141749 cites W1967624054 @default.
- W2164141749 cites W2004805964 @default.
- W2164141749 cites W2041280856 @default.
- W2164141749 cites W2080223447 @default.
- W2164141749 cites W2081768791 @default.
- W2164141749 cites W2087940330 @default.
- W2164141749 cites W270483984 @default.
- W2164141749 doi "https://doi.org/10.1016/s0952-1976(02)00004-0" @default.
- W2164141749 hasPublicationYear "2002" @default.
- W2164141749 type Work @default.
- W2164141749 sameAs 2164141749 @default.
- W2164141749 citedByCount "131" @default.
- W2164141749 countsByYear W21641417492012 @default.
- W2164141749 countsByYear W21641417492013 @default.
- W2164141749 countsByYear W21641417492014 @default.
- W2164141749 countsByYear W21641417492015 @default.
- W2164141749 countsByYear W21641417492016 @default.
- W2164141749 countsByYear W21641417492017 @default.
- W2164141749 countsByYear W21641417492018 @default.
- W2164141749 countsByYear W21641417492019 @default.
- W2164141749 countsByYear W21641417492020 @default.
- W2164141749 countsByYear W21641417492021 @default.
- W2164141749 countsByYear W21641417492022 @default.
- W2164141749 countsByYear W21641417492023 @default.
- W2164141749 crossrefType "journal-article" @default.
- W2164141749 hasAuthorship W2164141749A5028753134 @default.
- W2164141749 hasAuthorship W2164141749A5044492083 @default.
- W2164141749 hasAuthorship W2164141749A5059782785 @default.
- W2164141749 hasAuthorship W2164141749A5075946740 @default.
- W2164141749 hasConcept C119857082 @default.
- W2164141749 hasConcept C154945302 @default.
- W2164141749 hasConcept C41008148 @default.
- W2164141749 hasConceptScore W2164141749C119857082 @default.
- W2164141749 hasConceptScore W2164141749C154945302 @default.
- W2164141749 hasConceptScore W2164141749C41008148 @default.
- W2164141749 hasIssue "1" @default.
- W2164141749 hasLocation W21641417491 @default.
- W2164141749 hasOpenAccess W2164141749 @default.
- W2164141749 hasPrimaryLocation W21641417491 @default.
- W2164141749 hasRelatedWork W2961085424 @default.
- W2164141749 hasRelatedWork W3046775127 @default.
- W2164141749 hasRelatedWork W3107474891 @default.
- W2164141749 hasRelatedWork W3209574120 @default.
- W2164141749 hasRelatedWork W4205958290 @default.
- W2164141749 hasRelatedWork W4285260836 @default.
- W2164141749 hasRelatedWork W4286629047 @default.
- W2164141749 hasRelatedWork W4306321456 @default.
- W2164141749 hasRelatedWork W4306674287 @default.
- W2164141749 hasRelatedWork W4224009465 @default.
- W2164141749 hasVolume "15" @default.
- W2164141749 isParatext "false" @default.
- W2164141749 isRetracted "false" @default.
- W2164141749 magId "2164141749" @default.
- W2164141749 workType "article" @default.