Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164527706> ?p ?o ?g. }
- W2164527706 endingPage "218" @default.
- W2164527706 startingPage "211" @default.
- W2164527706 abstract "Abstract Artificial neural networks have been used for the correlation and prediction of solubility data of hydrogen sulfide in ionic liquids. The solubility of hydrogen sulfide is highly variable for different types of ionic liquids at the same temperature and pressure and its correlation and prediction is of special importance in the removal of hydrogen sulfide from flue gases for which effective and efficient solvents are required. Several network architectures were tested to finally choose a three layer network with 6, 10 and 1 neuron, respectively (6, 10, 1). Twelve binary hydrogen sulfide + ionic liquids mixtures were considered in the study. Solubility data (pressure, temperature, gas concentration in the liquid phase) for these systems were taken from the literature (392 data points for training and 104 data points for testing). The training variables are the temperature and the pressure of the binary systems being the target variable the solubility of hydrogen sulfide in the ionic liquid. Average absolute deviations are lower than 4.0% and the maximum individual absolute deviation in solubility is 12.6%. The proposed neural network model is a good alternative method for the estimation of solubility of hydrogen sulfide in ionic liquids for its use in process analysis, process design and process simulation." @default.
- W2164527706 created "2016-06-24" @default.
- W2164527706 creator A5001508443 @default.
- W2164527706 creator A5014344438 @default.
- W2164527706 creator A5091217417 @default.
- W2164527706 date "2016-03-01" @default.
- W2164527706 modified "2023-10-03" @default.
- W2164527706 title "Solubility of hydrogen sulfide in ionic liquids for gas removal processes using artificial neural networks" @default.
- W2164527706 cites W1595796962 @default.
- W2164527706 cites W1964892335 @default.
- W2164527706 cites W1970080634 @default.
- W2164527706 cites W1977803061 @default.
- W2164527706 cites W1980522283 @default.
- W2164527706 cites W1982741233 @default.
- W2164527706 cites W1987090206 @default.
- W2164527706 cites W1987761437 @default.
- W2164527706 cites W1988085592 @default.
- W2164527706 cites W1998181670 @default.
- W2164527706 cites W2001227520 @default.
- W2164527706 cites W2002539479 @default.
- W2164527706 cites W2004415609 @default.
- W2164527706 cites W2007516050 @default.
- W2164527706 cites W2008575014 @default.
- W2164527706 cites W2008987006 @default.
- W2164527706 cites W2009106042 @default.
- W2164527706 cites W2012991064 @default.
- W2164527706 cites W2021545675 @default.
- W2164527706 cites W2021860166 @default.
- W2164527706 cites W2027994982 @default.
- W2164527706 cites W2029466310 @default.
- W2164527706 cites W2029998788 @default.
- W2164527706 cites W2030524365 @default.
- W2164527706 cites W2031908494 @default.
- W2164527706 cites W2034991001 @default.
- W2164527706 cites W2036221256 @default.
- W2164527706 cites W2038553869 @default.
- W2164527706 cites W2042434323 @default.
- W2164527706 cites W2044908866 @default.
- W2164527706 cites W2049120993 @default.
- W2164527706 cites W2051989789 @default.
- W2164527706 cites W2054904072 @default.
- W2164527706 cites W2057564827 @default.
- W2164527706 cites W2059457086 @default.
- W2164527706 cites W2061643009 @default.
- W2164527706 cites W2071470582 @default.
- W2164527706 cites W2075977490 @default.
- W2164527706 cites W2077147395 @default.
- W2164527706 cites W2083639134 @default.
- W2164527706 cites W2084446153 @default.
- W2164527706 cites W2086131736 @default.
- W2164527706 cites W2088846827 @default.
- W2164527706 cites W2090695689 @default.
- W2164527706 cites W2095510466 @default.
- W2164527706 cites W2098998854 @default.
- W2164527706 cites W2112625433 @default.
- W2164527706 cites W2137910426 @default.
- W2164527706 cites W2143280112 @default.
- W2164527706 cites W2145380868 @default.
- W2164527706 cites W2315704884 @default.
- W2164527706 cites W2319777796 @default.
- W2164527706 cites W2319872723 @default.
- W2164527706 cites W3021430564 @default.
- W2164527706 doi "https://doi.org/10.1016/j.jece.2015.11.008" @default.
- W2164527706 hasPublicationYear "2016" @default.
- W2164527706 type Work @default.
- W2164527706 sameAs 2164527706 @default.
- W2164527706 citedByCount "32" @default.
- W2164527706 countsByYear W21645277062017 @default.
- W2164527706 countsByYear W21645277062018 @default.
- W2164527706 countsByYear W21645277062019 @default.
- W2164527706 countsByYear W21645277062020 @default.
- W2164527706 countsByYear W21645277062021 @default.
- W2164527706 countsByYear W21645277062022 @default.
- W2164527706 countsByYear W21645277062023 @default.
- W2164527706 crossrefType "journal-article" @default.
- W2164527706 hasAuthorship W2164527706A5001508443 @default.
- W2164527706 hasAuthorship W2164527706A5014344438 @default.
- W2164527706 hasAuthorship W2164527706A5091217417 @default.
- W2164527706 hasConcept C109209724 @default.
- W2164527706 hasConcept C127413603 @default.
- W2164527706 hasConcept C154881586 @default.
- W2164527706 hasConcept C154945302 @default.
- W2164527706 hasConcept C155574463 @default.
- W2164527706 hasConcept C161790260 @default.
- W2164527706 hasConcept C178790620 @default.
- W2164527706 hasConcept C179104552 @default.
- W2164527706 hasConcept C185592680 @default.
- W2164527706 hasConcept C192562407 @default.
- W2164527706 hasConcept C2780564542 @default.
- W2164527706 hasConcept C2780596425 @default.
- W2164527706 hasConcept C41008148 @default.
- W2164527706 hasConcept C42360764 @default.
- W2164527706 hasConcept C50644808 @default.
- W2164527706 hasConcept C512968161 @default.
- W2164527706 hasConcept C518881349 @default.
- W2164527706 hasConcept C68000547 @default.
- W2164527706 hasConceptScore W2164527706C109209724 @default.
- W2164527706 hasConceptScore W2164527706C127413603 @default.