Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164586148> ?p ?o ?g. }
- W2164586148 abstract "This thesis presents new and improved scheduling algorithms for a number of scheduling problems. The first part of the thesis deals with two online-list scheduling problems, both with the objective to minimize the makespan. In these problems, the jobs arrive one by one and the decision maker has to irrevocably schedule the arriving job before the next job becomes known. In the second part, a new solution methodology for the time-constrained project scheduling problem is developed, and a decomposition method for the time-constrained project scheduling problem with adjacent resources is presented. The first online problem considered, is online-list scheduling of parallel jobs with the objective to minimize the makespan, and some of its special cases. In these problems there is a set of identical machines to process a set of parallel jobs. In contrast to the jobs in classical machine scheduling problems, parallel jobs require a number of machines simultaneously for their processing. For this problem, a 6.6623-competitive online algorithm and a lower bound of 2.43 on the competitive ratio of any online algorithm are presented. Both results are also applicable to the online orthogonal strip packing problem. Besides the tight lower bound of 2 on the competitive ratio of the problem with exactly two machines, also improved online algorithms for the case with exactly three machines and the semi-online case where jobs appear in non-increasing order of machine requirement are given. The second online problem covered, is the online-list batch scheduling problem with the objective to minimize the makespan. In this problem, there is one machine with a given batch capacity that processes the jobs in a parallel batching manner. Parallel batching means that all jobs in one batch receive processing at the same time. A complete classification of the tractability of this online problem is given; with respect to the competitive ratio an optimal online algorithm for any capacity of the batching machine is presented. The second part of this thesis presents a new scheduling approach for scheduling with strict deadlines on the jobs. This approach is applied to the time-constrained project scheduling problem. In this problem there is a set of resources, each with its own capacity, and a set of jobs requiring a specific amount of each of the resources during its processing. Additionally, there are precedence relations between the jobs and each job has a deadline. To be able to meet the deadlines in this problem, it is possible to work in overtime or hire additional capacity in regular time or overtime. In the developed two stage heuristic, the key step lies in the first stage where partial schedules are constructed. In these partial schedules, jobs may be scheduled for a shorter duration than required. The goal is to create a schedule in which the usage of overtime and extra hiring is low. The proposed method tries to prevent a pile up of costs toward the deadlines by including all jobs partially before addressing the bottlenecks. Computational tests are preformed on modified resource-constrained project scheduling benchmark instances. Many instances are solved to optimality, and lead only to a small increase of costs if the deadline is substantially decreased. Finally, the time-constrained project scheduling problem is considered under the addition of a new type of constraint, namely an adjacent resource constraint. An adjacent resource constraint requires that the units of the resource assigned to a job have to be adjacent. On top of that, adjacent resources are not required by single jobs, but by job groups. The additional complexity introduced by adding adjacent resources to the project scheduling problem, plays an important role both for the computational tractability and the algorithm design when solving the problem. The developed decomposition method separates the adjacent resource assignment from the rest of the scheduling problem. Once the job groups are assigned to the adjacent resource, the scheduling of the jobs can be done without considering the adjacent resource. The presented decomposition method forms a first promising approach for the time-constrained project scheduling problem with adjacent resources and may form a good basis to develop more elaborated methods." @default.
- W2164586148 created "2016-06-24" @default.
- W2164586148 creator A5090057542 @default.
- W2164586148 date "2009-03-13" @default.
- W2164586148 modified "2023-10-18" @default.
- W2164586148 title "Online scheduling and project scheduling" @default.
- W2164586148 cites W1481317444 @default.
- W2164586148 cites W1487025936 @default.
- W2164586148 cites W1488422606 @default.
- W2164586148 cites W1512794094 @default.
- W2164586148 cites W1552828154 @default.
- W2164586148 cites W1570584007 @default.
- W2164586148 cites W1599248213 @default.
- W2164586148 cites W1608411866 @default.
- W2164586148 cites W1886829784 @default.
- W2164586148 cites W1969848548 @default.
- W2164586148 cites W1971702637 @default.
- W2164586148 cites W1972899329 @default.
- W2164586148 cites W1973131489 @default.
- W2164586148 cites W1987565711 @default.
- W2164586148 cites W1993201768 @default.
- W2164586148 cites W1995142127 @default.
- W2164586148 cites W1995217454 @default.
- W2164586148 cites W2001066639 @default.
- W2164586148 cites W2007087937 @default.
- W2164586148 cites W2011039300 @default.
- W2164586148 cites W2012303397 @default.
- W2164586148 cites W2014087562 @default.
- W2164586148 cites W2016007273 @default.
- W2164586148 cites W2019729116 @default.
- W2164586148 cites W2021261368 @default.
- W2164586148 cites W2023044784 @default.
- W2164586148 cites W2038345112 @default.
- W2164586148 cites W2041080861 @default.
- W2164586148 cites W2041182977 @default.
- W2164586148 cites W2041645394 @default.
- W2164586148 cites W2045215405 @default.
- W2164586148 cites W2047619284 @default.
- W2164586148 cites W2048036273 @default.
- W2164586148 cites W2053245796 @default.
- W2164586148 cites W2066960045 @default.
- W2164586148 cites W2067462952 @default.
- W2164586148 cites W2067801697 @default.
- W2164586148 cites W2073901754 @default.
- W2164586148 cites W2073936797 @default.
- W2164586148 cites W2076671014 @default.
- W2164586148 cites W2081794946 @default.
- W2164586148 cites W2081987145 @default.
- W2164586148 cites W2082832591 @default.
- W2164586148 cites W2083819591 @default.
- W2164586148 cites W2084967063 @default.
- W2164586148 cites W2086190489 @default.
- W2164586148 cites W2088944929 @default.
- W2164586148 cites W2089269509 @default.
- W2164586148 cites W2093901218 @default.
- W2164586148 cites W2104680817 @default.
- W2164586148 cites W2104730336 @default.
- W2164586148 cites W2106371135 @default.
- W2164586148 cites W2111001493 @default.
- W2164586148 cites W2115015692 @default.
- W2164586148 cites W2115631771 @default.
- W2164586148 cites W2119760147 @default.
- W2164586148 cites W2122967269 @default.
- W2164586148 cites W2131027508 @default.
- W2164586148 cites W2131167412 @default.
- W2164586148 cites W2137370418 @default.
- W2164586148 cites W2137530332 @default.
- W2164586148 cites W2138543065 @default.
- W2164586148 cites W2140111775 @default.
- W2164586148 cites W2147672179 @default.
- W2164586148 cites W2149935414 @default.
- W2164586148 cites W2167112911 @default.
- W2164586148 cites W2169657806 @default.
- W2164586148 cites W2170538936 @default.
- W2164586148 cites W2171761463 @default.
- W2164586148 cites W2341350247 @default.
- W2164586148 cites W238776573 @default.
- W2164586148 cites W2521365083 @default.
- W2164586148 cites W2810799211 @default.
- W2164586148 cites W2988480584 @default.
- W2164586148 cites W55614575 @default.
- W2164586148 cites W620587418 @default.
- W2164586148 cites W1523416710 @default.
- W2164586148 cites W2891212941 @default.
- W2164586148 doi "https://doi.org/10.3990/1.9789036527538" @default.
- W2164586148 hasPublicationYear "2009" @default.
- W2164586148 type Work @default.
- W2164586148 sameAs 2164586148 @default.
- W2164586148 citedByCount "0" @default.
- W2164586148 crossrefType "dissertation" @default.
- W2164586148 hasAuthorship W2164586148A5090057542 @default.
- W2164586148 hasBestOaLocation W21645861481 @default.
- W2164586148 hasConcept C102370290 @default.
- W2164586148 hasConcept C102408133 @default.
- W2164586148 hasConcept C107568181 @default.
- W2164586148 hasConcept C111919701 @default.
- W2164586148 hasConcept C11413529 @default.
- W2164586148 hasConcept C119948110 @default.
- W2164586148 hasConcept C120314980 @default.
- W2164586148 hasConcept C126255220 @default.