Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164768462> ?p ?o ?g. }
- W2164768462 endingPage "153" @default.
- W2164768462 startingPage "127" @default.
- W2164768462 abstract "Multistate stochastic programs pose some of the more challenging optimization problems. Because such models can become rather intractable in general, it is important to design algorithms that can provide approximations which, in the long run, yield solutions that are arbitrarily close to an optimum. In this paper, we propose such a sequential sampling method which is applicable to multistage stochastic linear programs, and we refer to it as the multistage stochastic decomposition (MSD) algorithm. This algorithm represents a dynamic extension of a regularized version of stochastic decomposition (SD). While the method allows general correlation structures, specialized streamlined versions are also possible for special cases of stagewise independent and autoregressive processes commonly incorporated in stochastic programming. As with its two-stage counterpart, the MSD algorithm is shown to provide an asymptotically optimal solution, with probability one. As a by-product of this study, we also show that SD algorithms draw upon features of both approximate dynamic programming as well as stochastic programming." @default.
- W2164768462 created "2016-06-24" @default.
- W2164768462 creator A5019817372 @default.
- W2164768462 creator A5026466952 @default.
- W2164768462 date "2014-01-01" @default.
- W2164768462 modified "2023-10-03" @default.
- W2164768462 title "Multistage Stochastic Decomposition: A Bridge between Stochastic Programming and Approximate Dynamic Programming" @default.
- W2164768462 cites W1964934516 @default.
- W2164768462 cites W1965079510 @default.
- W2164768462 cites W1969007958 @default.
- W2164768462 cites W1992208280 @default.
- W2164768462 cites W1994616650 @default.
- W2164768462 cites W1995265117 @default.
- W2164768462 cites W1996934332 @default.
- W2164768462 cites W2002569352 @default.
- W2164768462 cites W2002982431 @default.
- W2164768462 cites W2012607508 @default.
- W2164768462 cites W2019710194 @default.
- W2164768462 cites W2027852107 @default.
- W2164768462 cites W2038426159 @default.
- W2164768462 cites W2039857457 @default.
- W2164768462 cites W2040358553 @default.
- W2164768462 cites W2044121814 @default.
- W2164768462 cites W2054110366 @default.
- W2164768462 cites W2082155171 @default.
- W2164768462 cites W2082431013 @default.
- W2164768462 cites W2087233288 @default.
- W2164768462 cites W2091371007 @default.
- W2164768462 cites W2093704185 @default.
- W2164768462 cites W2094721569 @default.
- W2164768462 cites W2100760548 @default.
- W2164768462 cites W2108062921 @default.
- W2164768462 cites W2116509768 @default.
- W2164768462 cites W2132388847 @default.
- W2164768462 cites W2138959811 @default.
- W2164768462 cites W2153814110 @default.
- W2164768462 cites W2162515354 @default.
- W2164768462 cites W2742900359 @default.
- W2164768462 cites W9180214 @default.
- W2164768462 doi "https://doi.org/10.1137/120864854" @default.
- W2164768462 hasPublicationYear "2014" @default.
- W2164768462 type Work @default.
- W2164768462 sameAs 2164768462 @default.
- W2164768462 citedByCount "49" @default.
- W2164768462 countsByYear W21647684622014 @default.
- W2164768462 countsByYear W21647684622015 @default.
- W2164768462 countsByYear W21647684622016 @default.
- W2164768462 countsByYear W21647684622017 @default.
- W2164768462 countsByYear W21647684622018 @default.
- W2164768462 countsByYear W21647684622019 @default.
- W2164768462 countsByYear W21647684622020 @default.
- W2164768462 countsByYear W21647684622021 @default.
- W2164768462 countsByYear W21647684622022 @default.
- W2164768462 countsByYear W21647684622023 @default.
- W2164768462 crossrefType "journal-article" @default.
- W2164768462 hasAuthorship W2164768462A5019817372 @default.
- W2164768462 hasAuthorship W2164768462A5026466952 @default.
- W2164768462 hasBestOaLocation W21647684622 @default.
- W2164768462 hasConcept C105795698 @default.
- W2164768462 hasConcept C11413529 @default.
- W2164768462 hasConcept C124681953 @default.
- W2164768462 hasConcept C126255220 @default.
- W2164768462 hasConcept C137631369 @default.
- W2164768462 hasConcept C18903297 @default.
- W2164768462 hasConcept C194387892 @default.
- W2164768462 hasConcept C33923547 @default.
- W2164768462 hasConcept C37404715 @default.
- W2164768462 hasConcept C41008148 @default.
- W2164768462 hasConcept C8272713 @default.
- W2164768462 hasConcept C86803240 @default.
- W2164768462 hasConceptScore W2164768462C105795698 @default.
- W2164768462 hasConceptScore W2164768462C11413529 @default.
- W2164768462 hasConceptScore W2164768462C124681953 @default.
- W2164768462 hasConceptScore W2164768462C126255220 @default.
- W2164768462 hasConceptScore W2164768462C137631369 @default.
- W2164768462 hasConceptScore W2164768462C18903297 @default.
- W2164768462 hasConceptScore W2164768462C194387892 @default.
- W2164768462 hasConceptScore W2164768462C33923547 @default.
- W2164768462 hasConceptScore W2164768462C37404715 @default.
- W2164768462 hasConceptScore W2164768462C41008148 @default.
- W2164768462 hasConceptScore W2164768462C8272713 @default.
- W2164768462 hasConceptScore W2164768462C86803240 @default.
- W2164768462 hasIssue "1" @default.
- W2164768462 hasLocation W21647684621 @default.
- W2164768462 hasLocation W21647684622 @default.
- W2164768462 hasOpenAccess W2164768462 @default.
- W2164768462 hasPrimaryLocation W21647684621 @default.
- W2164768462 hasRelatedWork W1788374662 @default.
- W2164768462 hasRelatedWork W1978379809 @default.
- W2164768462 hasRelatedWork W2019710194 @default.
- W2164768462 hasRelatedWork W2036340228 @default.
- W2164768462 hasRelatedWork W2187982626 @default.
- W2164768462 hasRelatedWork W2325180936 @default.
- W2164768462 hasRelatedWork W2730638225 @default.
- W2164768462 hasRelatedWork W2949762850 @default.
- W2164768462 hasRelatedWork W2973896077 @default.
- W2164768462 hasRelatedWork W3083526846 @default.
- W2164768462 hasVolume "24" @default.