Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164801701> ?p ?o ?g. }
- W2164801701 endingPage "1597" @default.
- W2164801701 startingPage "1585" @default.
- W2164801701 abstract "Spatial normalization of diffusion tensor images plays a key role in voxel-based analysis of white matter (WM) group differences. Currently, it has been achieved using low-dimensional registration methods in the large majority of clinical studies. This paper aims to motivate the use of high-dimensional normalization approaches by generating evidence of their impact on the findings of such studies. Using an ongoing amyotrophic lateral sclerosis (ALS) study, we evaluated three normalization methods representing the current range of available approaches: low-dimensional normalization using the fractional anisotropy (FA), high-dimensional normalization using the FA, and high-dimensional normalization using full tensor information. Each method was assessed in terms of its ability to detect significant differences between ALS patients and controls. Our findings suggest that inadequate normalization with low-dimensional approaches can result in insufficient removal of shape differences which in turn can confound FA differences in a complex manner, and that utilizing high-dimensional normalization can both significantly minimize the confounding effect of shape differences to FA differences and provide a more complete description of WM differences in terms of both size and tissue architecture differences. We also found that high-dimensional approaches, by leveraging full tensor features instead of tensor-derived indices, can further improve the alignment of WM tracts." @default.
- W2164801701 created "2016-06-24" @default.
- W2164801701 creator A5002875969 @default.
- W2164801701 creator A5005451810 @default.
- W2164801701 creator A5013553926 @default.
- W2164801701 creator A5016551394 @default.
- W2164801701 creator A5041746804 @default.
- W2164801701 creator A5056480402 @default.
- W2164801701 creator A5056969742 @default.
- W2164801701 creator A5059550368 @default.
- W2164801701 creator A5084210639 @default.
- W2164801701 date "2007-11-01" @default.
- W2164801701 modified "2023-10-03" @default.
- W2164801701 title "High-Dimensional Spatial Normalization of Diffusion Tensor Images Improves the Detection of White Matter Differences: An Example Study Using Amyotrophic Lateral Sclerosis" @default.
- W2164801701 cites W1526085390 @default.
- W2164801701 cites W154947979 @default.
- W2164801701 cites W1949070191 @default.
- W2164801701 cites W1963521532 @default.
- W2164801701 cites W1968392604 @default.
- W2164801701 cites W1973127790 @default.
- W2164801701 cites W1973236375 @default.
- W2164801701 cites W1973562248 @default.
- W2164801701 cites W1979699008 @default.
- W2164801701 cites W2006006542 @default.
- W2164801701 cites W2007889670 @default.
- W2164801701 cites W2009039636 @default.
- W2164801701 cites W2016845091 @default.
- W2164801701 cites W2017789052 @default.
- W2164801701 cites W2022530159 @default.
- W2164801701 cites W2023404034 @default.
- W2164801701 cites W2024647833 @default.
- W2164801701 cites W2027328104 @default.
- W2164801701 cites W2028729513 @default.
- W2164801701 cites W2028948352 @default.
- W2164801701 cites W2036785860 @default.
- W2164801701 cites W2046622101 @default.
- W2164801701 cites W2048083280 @default.
- W2164801701 cites W2049105183 @default.
- W2164801701 cites W2056077499 @default.
- W2164801701 cites W2057179260 @default.
- W2164801701 cites W2059330718 @default.
- W2164801701 cites W2060327991 @default.
- W2164801701 cites W2063237661 @default.
- W2164801701 cites W2068555154 @default.
- W2164801701 cites W2071881327 @default.
- W2164801701 cites W2072139896 @default.
- W2164801701 cites W2082484987 @default.
- W2164801701 cites W2091738674 @default.
- W2164801701 cites W2094682431 @default.
- W2164801701 cites W2096629649 @default.
- W2164801701 cites W2097047986 @default.
- W2164801701 cites W2102753837 @default.
- W2164801701 cites W2109060361 @default.
- W2164801701 cites W2110431535 @default.
- W2164801701 cites W2113184474 @default.
- W2164801701 cites W2116649573 @default.
- W2164801701 cites W2119848633 @default.
- W2164801701 cites W2121014637 @default.
- W2164801701 cites W2122868775 @default.
- W2164801701 cites W2123672494 @default.
- W2164801701 cites W2128675823 @default.
- W2164801701 cites W2132091104 @default.
- W2164801701 cites W2136437502 @default.
- W2164801701 cites W2138790588 @default.
- W2164801701 cites W2143316684 @default.
- W2164801701 cites W2143885037 @default.
- W2164801701 cites W2145138920 @default.
- W2164801701 cites W2150667092 @default.
- W2164801701 cites W2151401359 @default.
- W2164801701 cites W2154485687 @default.
- W2164801701 cites W2154899130 @default.
- W2164801701 cites W2156715960 @default.
- W2164801701 cites W2157035009 @default.
- W2164801701 cites W2157481067 @default.
- W2164801701 cites W2162632094 @default.
- W2164801701 cites W2162757092 @default.
- W2164801701 cites W2170463782 @default.
- W2164801701 cites W2172210950 @default.
- W2164801701 cites W2296621543 @default.
- W2164801701 cites W2759856034 @default.
- W2164801701 cites W4376595444 @default.
- W2164801701 doi "https://doi.org/10.1109/tmi.2007.906784" @default.
- W2164801701 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18041273" @default.
- W2164801701 hasPublicationYear "2007" @default.
- W2164801701 type Work @default.
- W2164801701 sameAs 2164801701 @default.
- W2164801701 citedByCount "227" @default.
- W2164801701 countsByYear W21648017012012 @default.
- W2164801701 countsByYear W21648017012013 @default.
- W2164801701 countsByYear W21648017012014 @default.
- W2164801701 countsByYear W21648017012015 @default.
- W2164801701 countsByYear W21648017012016 @default.
- W2164801701 countsByYear W21648017012017 @default.
- W2164801701 countsByYear W21648017012018 @default.
- W2164801701 countsByYear W21648017012019 @default.
- W2164801701 countsByYear W21648017012020 @default.
- W2164801701 countsByYear W21648017012021 @default.
- W2164801701 countsByYear W21648017012022 @default.