Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164874742> ?p ?o ?g. }
- W2164874742 endingPage "93" @default.
- W2164874742 startingPage "82" @default.
- W2164874742 abstract "A simulation approach is introduced for directly determining reaction paths and stationary points on potential of mean force (PMF) surfaces associated with molecular events that occur in complex environments. The nudged elastic band approach was employed to search for steepest descent paths on the PMF surface using the relevant PMF derivatives from a series of local simulations. The steepest descent path on the PMF surface corresponds to the minimum PMF path (i.e. the path with the lowest local PMF barrier), which contains important information about stationary points (e.g. saddle points) on the PMF surface, which in turn can provide useful insights into the thermodynamics and kinetics for the process of interest. By working with the PMF defined in a low-dimensional sub-space rather than a potential energy function of full molecular dimensionality, the main features of the process under study are concisely represented and the orthogonal degrees of freedom are adequately sampled with the appropriate canonical distribution at the desired temperature (e.g. 300 K). Therefore, minimum PMF paths carry statistically meaningful mechanistic information and are complementary to reaction paths of full molecular dimensionality proposed in previous studies. The NEB based path optimization method is direct in the sense that no information regarding the global PMF surface is necessary for the determination of the local reaction path and stationary points along this path. Since only low-dimensional quantities (paths) are searched for, the PMF-path method is expected to scale better in terms of dimension of the PMF sub-space than those aims to fully explore multi-dimensional PMF surfaces. Test applications on simple molecular systems, the alanine di-peptide in vacuum and in solution and a micro-solvated proton-wire, indicate that reliable PMF paths can be determined for both conformational isomerization and chemical reaction processes. However, highly accurate PMF derivatives are required for determining more quantitative observables, such as the free energy profile along the minimum PMF path. Therefore, effective numerical algorithms for calculating local PMF derivatives and systematic protocols for defining the relevant sub-space are the main focus in the near future. Finally, we emphasize that the minimum PMF path defined here includes thermal (e.g. entropic) effects associated with the orthogonal degrees of freedom, but finite kinetic energies associated with the PMF degrees of freedom are not included; this can be improved by adopting a different definition of the reaction path, such as the maximum flux path, on the PMF surface, or thermally sampling all degrees of freedom orthogonal to the one-dimensional path." @default.
- W2164874742 created "2016-06-24" @default.
- W2164874742 creator A5013178268 @default.
- W2164874742 creator A5036789652 @default.
- W2164874742 date "2005-10-01" @default.
- W2164874742 modified "2023-10-17" @default.
- W2164874742 title "Direct determination of reaction paths and stationary points on potential of mean force surfaces" @default.
- W2164874742 cites W1530912342 @default.
- W2164874742 cites W1565168964 @default.
- W2164874742 cites W1945000669 @default.
- W2164874742 cites W1964921950 @default.
- W2164874742 cites W1966577910 @default.
- W2164874742 cites W1966785555 @default.
- W2164874742 cites W1968184943 @default.
- W2164874742 cites W1969382687 @default.
- W2164874742 cites W1976323578 @default.
- W2164874742 cites W1977456707 @default.
- W2164874742 cites W1977569451 @default.
- W2164874742 cites W1979885108 @default.
- W2164874742 cites W1990198969 @default.
- W2164874742 cites W1990551042 @default.
- W2164874742 cites W1992173555 @default.
- W2164874742 cites W1993177346 @default.
- W2164874742 cites W2002914903 @default.
- W2164874742 cites W2007880132 @default.
- W2164874742 cites W2010516507 @default.
- W2164874742 cites W2010826147 @default.
- W2164874742 cites W2014574246 @default.
- W2164874742 cites W2017370697 @default.
- W2164874742 cites W2019266755 @default.
- W2164874742 cites W2021361846 @default.
- W2164874742 cites W2022365278 @default.
- W2164874742 cites W2022696619 @default.
- W2164874742 cites W2023076425 @default.
- W2164874742 cites W2024423406 @default.
- W2164874742 cites W2028702957 @default.
- W2164874742 cites W2031430816 @default.
- W2164874742 cites W2040249893 @default.
- W2164874742 cites W2041753261 @default.
- W2164874742 cites W2043653238 @default.
- W2164874742 cites W2046743588 @default.
- W2164874742 cites W2058241222 @default.
- W2164874742 cites W2062061207 @default.
- W2164874742 cites W2064810205 @default.
- W2164874742 cites W2065372326 @default.
- W2164874742 cites W2066083439 @default.
- W2164874742 cites W2067711486 @default.
- W2164874742 cites W2069683530 @default.
- W2164874742 cites W2076469439 @default.
- W2164874742 cites W2076539319 @default.
- W2164874742 cites W2079199763 @default.
- W2164874742 cites W2083992213 @default.
- W2164874742 cites W2085162785 @default.
- W2164874742 cites W2085470091 @default.
- W2164874742 cites W2092144432 @default.
- W2164874742 cites W2092420711 @default.
- W2164874742 cites W2093221728 @default.
- W2164874742 cites W2094795801 @default.
- W2164874742 cites W2094944141 @default.
- W2164874742 cites W2099490136 @default.
- W2164874742 cites W2104395386 @default.
- W2164874742 cites W2106140689 @default.
- W2164874742 cites W2107007872 @default.
- W2164874742 cites W2110043143 @default.
- W2164874742 cites W2110746186 @default.
- W2164874742 cites W2112133710 @default.
- W2164874742 cites W2112154906 @default.
- W2164874742 cites W2121326637 @default.
- W2164874742 cites W2122427541 @default.
- W2164874742 cites W2130390906 @default.
- W2164874742 cites W2135489056 @default.
- W2164874742 cites W2140188801 @default.
- W2164874742 cites W2143183478 @default.
- W2164874742 cites W2147396853 @default.
- W2164874742 cites W2149655632 @default.
- W2164874742 cites W2154535641 @default.
- W2164874742 cites W2163845030 @default.
- W2164874742 cites W2171893485 @default.
- W2164874742 cites W3004570087 @default.
- W2164874742 cites W3102437514 @default.
- W2164874742 cites W3104305066 @default.
- W2164874742 cites W4248247707 @default.
- W2164874742 doi "https://doi.org/10.1016/j.jmgm.2005.06.001" @default.
- W2164874742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16005650" @default.
- W2164874742 hasPublicationYear "2005" @default.
- W2164874742 type Work @default.
- W2164874742 sameAs 2164874742 @default.
- W2164874742 citedByCount "6" @default.
- W2164874742 crossrefType "journal-article" @default.
- W2164874742 hasAuthorship W2164874742A5013178268 @default.
- W2164874742 hasAuthorship W2164874742A5036789652 @default.
- W2164874742 hasConcept C105795698 @default.
- W2164874742 hasConcept C111030470 @default.
- W2164874742 hasConcept C119857082 @default.
- W2164874742 hasConcept C121332964 @default.
- W2164874742 hasConcept C121864883 @default.
- W2164874742 hasConcept C125277925 @default.
- W2164874742 hasConcept C134306372 @default.