Matches in SemOpenAlex for { <https://semopenalex.org/work/W2164927104> ?p ?o ?g. }
- W2164927104 abstract "Data collected in many epidemiological or clinical research studies are often contaminated with measurement errors that may be of classical or Berkson error type. The measurement error may also be a combination of both classical and Berkson errors and failure to account for both errors could lead to unreliable inference in many situations. We consider regression analysis in generalized linear models when some covariates are prone to a mixture of Berkson and classical errors, and calibration data are available only for some subjects in a subsample. We propose an expected estimating equation approach to accommodate both errors in generalized linear regression analyses. The proposed method can consistently estimate the classical and Berkson error variances based on the available data, without knowing the mixture percentage. We investigated its finite-sample performance numerically. Our method is illustrated by an application to real data from an HIV vaccine study." @default.
- W2164927104 created "2016-06-24" @default.
- W2164927104 creator A5016094111 @default.
- W2164927104 creator A5034033888 @default.
- W2164927104 creator A5045973170 @default.
- W2164927104 date "2013-09-06" @default.
- W2164927104 modified "2023-10-03" @default.
- W2164927104 title "Expected estimating equation using calibration data for generalized linear models with a mixture of Berkson and classical errors in covariates" @default.
- W2164927104 cites W1972117954 @default.
- W2164927104 cites W1973078451 @default.
- W2164927104 cites W1990492529 @default.
- W2164927104 cites W1991392553 @default.
- W2164927104 cites W1993373433 @default.
- W2164927104 cites W2000239378 @default.
- W2164927104 cites W2011287710 @default.
- W2164927104 cites W2025616429 @default.
- W2164927104 cites W2041003765 @default.
- W2164927104 cites W2044873480 @default.
- W2164927104 cites W2061250208 @default.
- W2164927104 cites W2067109073 @default.
- W2164927104 cites W2072892009 @default.
- W2164927104 cites W2081530572 @default.
- W2164927104 cites W2091830729 @default.
- W2164927104 cites W2093483720 @default.
- W2164927104 cites W2093663318 @default.
- W2164927104 cites W2115854570 @default.
- W2164927104 cites W2119913211 @default.
- W2164927104 cites W2120632477 @default.
- W2164927104 cites W2139141288 @default.
- W2164927104 cites W2141828312 @default.
- W2164927104 cites W2151507037 @default.
- W2164927104 cites W2163102936 @default.
- W2164927104 cites W2240372320 @default.
- W2164927104 cites W3099204701 @default.
- W2164927104 cites W3143949042 @default.
- W2164927104 doi "https://doi.org/10.1002/sim.5966" @default.
- W2164927104 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3947110" @default.
- W2164927104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24009099" @default.
- W2164927104 hasPublicationYear "2013" @default.
- W2164927104 type Work @default.
- W2164927104 sameAs 2164927104 @default.
- W2164927104 citedByCount "1" @default.
- W2164927104 countsByYear W21649271042019 @default.
- W2164927104 crossrefType "journal-article" @default.
- W2164927104 hasAuthorship W2164927104A5016094111 @default.
- W2164927104 hasAuthorship W2164927104A5034033888 @default.
- W2164927104 hasAuthorship W2164927104A5045973170 @default.
- W2164927104 hasBestOaLocation W21649271042 @default.
- W2164927104 hasConcept C105795698 @default.
- W2164927104 hasConcept C119043178 @default.
- W2164927104 hasConcept C134261354 @default.
- W2164927104 hasConcept C149782125 @default.
- W2164927104 hasConcept C154945302 @default.
- W2164927104 hasConcept C165838908 @default.
- W2164927104 hasConcept C179024874 @default.
- W2164927104 hasConcept C19619285 @default.
- W2164927104 hasConcept C2776214188 @default.
- W2164927104 hasConcept C28826006 @default.
- W2164927104 hasConcept C33923547 @default.
- W2164927104 hasConcept C41008148 @default.
- W2164927104 hasConcept C41587187 @default.
- W2164927104 hasConcept C48921125 @default.
- W2164927104 hasConcept C83546350 @default.
- W2164927104 hasConceptScore W2164927104C105795698 @default.
- W2164927104 hasConceptScore W2164927104C119043178 @default.
- W2164927104 hasConceptScore W2164927104C134261354 @default.
- W2164927104 hasConceptScore W2164927104C149782125 @default.
- W2164927104 hasConceptScore W2164927104C154945302 @default.
- W2164927104 hasConceptScore W2164927104C165838908 @default.
- W2164927104 hasConceptScore W2164927104C179024874 @default.
- W2164927104 hasConceptScore W2164927104C19619285 @default.
- W2164927104 hasConceptScore W2164927104C2776214188 @default.
- W2164927104 hasConceptScore W2164927104C28826006 @default.
- W2164927104 hasConceptScore W2164927104C33923547 @default.
- W2164927104 hasConceptScore W2164927104C41008148 @default.
- W2164927104 hasConceptScore W2164927104C41587187 @default.
- W2164927104 hasConceptScore W2164927104C48921125 @default.
- W2164927104 hasConceptScore W2164927104C83546350 @default.
- W2164927104 hasLocation W21649271041 @default.
- W2164927104 hasLocation W21649271042 @default.
- W2164927104 hasLocation W21649271043 @default.
- W2164927104 hasLocation W21649271044 @default.
- W2164927104 hasOpenAccess W2164927104 @default.
- W2164927104 hasPrimaryLocation W21649271041 @default.
- W2164927104 hasRelatedWork W1840262302 @default.
- W2164927104 hasRelatedWork W1926212305 @default.
- W2164927104 hasRelatedWork W1979463248 @default.
- W2164927104 hasRelatedWork W1986901691 @default.
- W2164927104 hasRelatedWork W1991392553 @default.
- W2164927104 hasRelatedWork W1999262996 @default.
- W2164927104 hasRelatedWork W2013045445 @default.
- W2164927104 hasRelatedWork W2030625807 @default.
- W2164927104 hasRelatedWork W2038203996 @default.
- W2164927104 hasRelatedWork W2057815328 @default.
- W2164927104 hasRelatedWork W2090656103 @default.
- W2164927104 hasRelatedWork W2099811086 @default.
- W2164927104 hasRelatedWork W2134248692 @default.
- W2164927104 hasRelatedWork W2135540798 @default.
- W2164927104 hasRelatedWork W2285905196 @default.
- W2164927104 hasRelatedWork W2286581362 @default.