Matches in SemOpenAlex for { <https://semopenalex.org/work/W21652070> ?p ?o ?g. }
- W21652070 abstract "We apply statistical relational learning to a database of criminal and terrorist activity to predict attributes and event outcomes. The database stems from a collection of news articles and court records which are carefully annotated with a variety of variables, including categorical and continuous fields. Manual analysis of this data can help inform decision makers seeking to curb violent activity within a region. We use this data to build relational models from historical data to predict attributes of groups, individuals, or events. Our first example involves predicting social network roles within a group under a variety of different data conditions. Collective classification can be used to boost the accuracy under data poor conditions. Additionally, we were able to predict the outcome of hostage negotiations using models trained on previous kidnapping events. The overall framework and techniques described here are flexible enough to be used to predict a variety of variables. Such predictions could be used as input to a more complex system to recognize intent of terrorist groups or as input to inform human decision makers. 1 Background and Motivation During the last decade, there has been an increasing effort toward data collection on criminal and terror networks using open source materials (e.g. news articles, police reports, and court documents.) A straightforward use of such data includes manual analysis of groups and individuals involved in nefarious activity to inform key decision makers tasked with preventing future bombings or other violent attacks. However, if the collection is detailed with specific annotations including continuous variables and categorical fields, the application of statistical machine learning becomes possible. An example of such an analysis is shown in [1], where the author used statistical methods to indentify extremist ∗This work was sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. †MIT Lincoln Laboratory, Information Systems Technology Group ‡University of Massachusetts Amherst, Knowledge Discovery Laboratory. A. Fast now at Elder Research Inc. groups responsible for surprise terror attacks. By modeling past behavior, statistical techniques can help find large scale patterns in the data and possibly be used to prevent or inform future activities. This paper investigates the use of statistical machine learning to predict individual attributes and event outcomes from a graphical representation of a relational database of terrorist activity. We apply statistical relational learning algorithms to predict leadership roles of individuals in a group based on patterns of activity, communication, and individual attributes. Using labeled training data, we apply supervised learning to build a model which describes the structures and patterns of leadership roles. The relational model returns a probability that a particular person is in a leadership role given a graphical representation of the individuals activities and attributes. A held out test set is used for evaluation and receiver operator curves (ROC) for correct prediction of leadership is presented. A more complex model is applied to give improved performance in a more realistic ”data poor” test condition. Such features can be important components of an overall automatic threat detection system such as the one presented in [2]. In such a system, automatic identification of individual roles and activities from basic features can help infer intent of groups and individuals through higher-level pattern recognition and social network analysis. In addition to predicting attributes of individuals, we use the relational model to predict the outcome of an event, in this case, the fate of a hostage in a kidnapping event. Given a particular hostage taking event, the system will be able to predict the probability that the hostage will be released or killed based on known properties of the event. Features in the this model might include ransom demands and payment, regions and countries of the event, hostage nationality, and groups or individuals involved along with their past activities. Each of these features indicates the likelihood that a successful hostage release can be negotiated. The aggregration of relational features such as the percentage of hostages released by similar groups in the past can be used to improve performance. Aggregation 409 Copyright © by SIAM. Unauthorized reproduction of this article is prohibited." @default.
- W21652070 created "2016-06-24" @default.
- W21652070 creator A5006681132 @default.
- W21652070 creator A5017085022 @default.
- W21652070 creator A5061064027 @default.
- W21652070 creator A5065163611 @default.
- W21652070 creator A5066114812 @default.
- W21652070 date "2010-04-29" @default.
- W21652070 modified "2023-09-25" @default.
- W21652070 title "The Application of Statistical Relational Learning to a Database of Criminal and Terrorist Activity" @default.
- W21652070 cites W1509515766 @default.
- W21652070 cites W1585529040 @default.
- W21652070 cites W1666347389 @default.
- W21652070 cites W1860991815 @default.
- W21652070 cites W2002012912 @default.
- W21652070 cites W2028137574 @default.
- W21652070 cites W2073923396 @default.
- W21652070 cites W2101705355 @default.
- W21652070 cites W2123827533 @default.
- W21652070 cites W2126908011 @default.
- W21652070 cites W2130354913 @default.
- W21652070 cites W2140127353 @default.
- W21652070 cites W2149205240 @default.
- W21652070 cites W2153387921 @default.
- W21652070 cites W2153959628 @default.
- W21652070 cites W2163738067 @default.
- W21652070 doi "https://doi.org/10.1137/1.9781611972801.36" @default.
- W21652070 hasPublicationYear "2010" @default.
- W21652070 type Work @default.
- W21652070 sameAs 21652070 @default.
- W21652070 citedByCount "4" @default.
- W21652070 countsByYear W216520702012 @default.
- W21652070 countsByYear W216520702013 @default.
- W21652070 countsByYear W216520702015 @default.
- W21652070 crossrefType "proceedings-article" @default.
- W21652070 hasAuthorship W21652070A5006681132 @default.
- W21652070 hasAuthorship W21652070A5017085022 @default.
- W21652070 hasAuthorship W21652070A5061064027 @default.
- W21652070 hasAuthorship W21652070A5065163611 @default.
- W21652070 hasAuthorship W21652070A5066114812 @default.
- W21652070 hasBestOaLocation W216520701 @default.
- W21652070 hasConcept C105795698 @default.
- W21652070 hasConcept C119857082 @default.
- W21652070 hasConcept C121332964 @default.
- W21652070 hasConcept C124101348 @default.
- W21652070 hasConcept C133462117 @default.
- W21652070 hasConcept C136197465 @default.
- W21652070 hasConcept C154945302 @default.
- W21652070 hasConcept C17744445 @default.
- W21652070 hasConcept C199539241 @default.
- W21652070 hasConcept C199776023 @default.
- W21652070 hasConcept C203133693 @default.
- W21652070 hasConcept C2522767166 @default.
- W21652070 hasConcept C2779662365 @default.
- W21652070 hasConcept C33923547 @default.
- W21652070 hasConcept C41008148 @default.
- W21652070 hasConcept C5274069 @default.
- W21652070 hasConcept C5655090 @default.
- W21652070 hasConcept C62520636 @default.
- W21652070 hasConceptScore W21652070C105795698 @default.
- W21652070 hasConceptScore W21652070C119857082 @default.
- W21652070 hasConceptScore W21652070C121332964 @default.
- W21652070 hasConceptScore W21652070C124101348 @default.
- W21652070 hasConceptScore W21652070C133462117 @default.
- W21652070 hasConceptScore W21652070C136197465 @default.
- W21652070 hasConceptScore W21652070C154945302 @default.
- W21652070 hasConceptScore W21652070C17744445 @default.
- W21652070 hasConceptScore W21652070C199539241 @default.
- W21652070 hasConceptScore W21652070C199776023 @default.
- W21652070 hasConceptScore W21652070C203133693 @default.
- W21652070 hasConceptScore W21652070C2522767166 @default.
- W21652070 hasConceptScore W21652070C2779662365 @default.
- W21652070 hasConceptScore W21652070C33923547 @default.
- W21652070 hasConceptScore W21652070C41008148 @default.
- W21652070 hasConceptScore W21652070C5274069 @default.
- W21652070 hasConceptScore W21652070C5655090 @default.
- W21652070 hasConceptScore W21652070C62520636 @default.
- W21652070 hasLocation W216520701 @default.
- W21652070 hasOpenAccess W21652070 @default.
- W21652070 hasPrimaryLocation W216520701 @default.
- W21652070 hasRelatedWork W124328752 @default.
- W21652070 hasRelatedWork W1480378593 @default.
- W21652070 hasRelatedWork W1502122916 @default.
- W21652070 hasRelatedWork W1533477412 @default.
- W21652070 hasRelatedWork W1578815899 @default.
- W21652070 hasRelatedWork W1587900512 @default.
- W21652070 hasRelatedWork W1977041410 @default.
- W21652070 hasRelatedWork W2053419358 @default.
- W21652070 hasRelatedWork W2093843477 @default.
- W21652070 hasRelatedWork W2097915776 @default.
- W21652070 hasRelatedWork W2111821134 @default.
- W21652070 hasRelatedWork W2212764924 @default.
- W21652070 hasRelatedWork W2806326686 @default.
- W21652070 hasRelatedWork W3037000835 @default.
- W21652070 hasRelatedWork W309707514 @default.
- W21652070 hasRelatedWork W93424371 @default.
- W21652070 hasRelatedWork W1636712341 @default.
- W21652070 hasRelatedWork W2112929357 @default.
- W21652070 hasRelatedWork W263354874 @default.
- W21652070 hasRelatedWork W3117950231 @default.