Matches in SemOpenAlex for { <https://semopenalex.org/work/W2165771317> ?p ?o ?g. }
- W2165771317 endingPage "999" @default.
- W2165771317 startingPage "971" @default.
- W2165771317 abstract "The Broadlands-Ohaaki geothermal system is a boiling hydrothermal systemhosted by a sequence of Quaternary felsic volcanic rocks and Mesozoicmetasediments. More than 50 wells have been drilled (400 to >2,600 m deep) toassess the geothermal potential for the production of electricity. Fluids andprecipitates sampled from wells, along with descriptions of the alterationminerals in more than 500 drill cores, provide a three-dimensional picture ofthe distribution of fluid types and secondary minerals. Interpretation of thesefeatures and the distribution of gold and silver highlight the relationshipbetween alteration and mineralization in an active, low-sulfidation epithermalenvironment. Quartz, illite, K feldspar (adularia), albite, chlorite, calcite, and pyriteare the main hydrothermal minerals that occur in the deep central upflow zone at>250°C and>600 m depth. These minerals form through recrystallization of the volcanichost rocks and incorporation of H 2 O, CO 2 , and H 2 Sin the presence of a deeply derived chloride water containing ~1,000 mg/kg Cland ~26,400 mg/kg CO 2 . At the same time, and on the periphery of theupflow zone, illite, smectite, calcite, and siderite form through hydroliticalteration in the presence of CO 2 -rich steam-heated waters thatcontain 2 . Upward and outwardfrom the deep central upflow zone, mineral patterns reflect the shift fromrock-dominated to fluid-dominated alteration and the prevailing influence ofboiling, mixing, and cooling on fluid-mineral equilibria. Accordingly, theabundance of quartz and K feldspar increase toward the upflow zone, whereas clayabundance increases toward the margin of the upflow zone (with smectitedominating at 200°C); the abundance ofchlorite, pyrite, and calcite varies here, but albite is absent. Geothermal production wells with high fluid fluxes are the main sites ofprecious-metal mineralization. The deep chloride water (with or without minoramounts of vapor) enters the well at depths >500 m and undergoes a pressuredrop that causes boiling. As a result, precious metals precipitate andaccumulate as scales on back-pressure plates or as detritus in surface weirboxes; these deposits contain 1,000 mg/kg Au, 10,000 mg/kg Ag and ~10 to ~1,000 mg/kg As and Sb, each. Within productionwells, platy calcite deposits as a scale at the site of first boiling near thefluid feed point, while crustiform-colloform-banded amorphous silica deposits insurface pipe work. By contrast, the hydrothermally altered host rocks containlow concentrations of gold, ranging from <0.01 to 1.0 mg/kg Au (68 analyses),and these correlate positively with arsenic (<100 to ~5,000 mg/kg) andantimony ( Reaction path modeling using SOLVEQ and CHILLER shows that calcite, Kfeldspar, gold, and amorphous silica deposit in sequence from a chloride waterthat cools along an adiabatic boiling path (300° to 100°C), analogous to fluidflow in a production well. By contrast, calcite, quartz, K mica, and pyritedeposit from a chloride water that cools due to mixing with CO 2 -richsteam-heated waters; dilution prevents precipitation of precious metals. Thusfield observations and reaction path modeling demonstrate that boiling is themain process influencing the deposition of precious metals. The results of this study show how peripheral hydrolytic alteration by CO 2 -richsteam-heated waters relate to propylitic and potassic alteration by chloridewaters in the epithermal environment of a hydrothermal system. Both thedistribution of alteration mineral assemblages associated with the differentwater types and the broad-scale distribution of temperature-sensitive smectiteand illite reflect the location of the upflow zone. On a local scale, theoccurrence of platy calcite, crustiform-colloform silica, and K feldspar inveins indicates the existence of boiling conditions conducive to precious-metaldeposition." @default.
- W2165771317 created "2016-06-24" @default.
- W2165771317 creator A5025343066 @default.
- W2165771317 creator A5075735752 @default.
- W2165771317 date "2000-08-01" @default.
- W2165771317 modified "2023-09-30" @default.
- W2165771317 title "Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments" @default.
- W2165771317 cites W193831200 @default.
- W2165771317 cites W1966359707 @default.
- W2165771317 cites W1970999811 @default.
- W2165771317 cites W1975861833 @default.
- W2165771317 cites W1978880449 @default.
- W2165771317 cites W1985307582 @default.
- W2165771317 cites W1991608029 @default.
- W2165771317 cites W1995657303 @default.
- W2165771317 cites W1995809323 @default.
- W2165771317 cites W1997942047 @default.
- W2165771317 cites W2001757705 @default.
- W2165771317 cites W2002587883 @default.
- W2165771317 cites W2006477561 @default.
- W2165771317 cites W2008647814 @default.
- W2165771317 cites W2008789137 @default.
- W2165771317 cites W2011610354 @default.
- W2165771317 cites W2011746009 @default.
- W2165771317 cites W2015695205 @default.
- W2165771317 cites W2017152376 @default.
- W2165771317 cites W2017154332 @default.
- W2165771317 cites W2018335072 @default.
- W2165771317 cites W2019023465 @default.
- W2165771317 cites W2022163977 @default.
- W2165771317 cites W2025255949 @default.
- W2165771317 cites W2032189884 @default.
- W2165771317 cites W2037447751 @default.
- W2165771317 cites W2037900290 @default.
- W2165771317 cites W2041668458 @default.
- W2165771317 cites W2046171791 @default.
- W2165771317 cites W2050444146 @default.
- W2165771317 cites W2051757039 @default.
- W2165771317 cites W2053024421 @default.
- W2165771317 cites W2054838851 @default.
- W2165771317 cites W2059414186 @default.
- W2165771317 cites W2059760436 @default.
- W2165771317 cites W2060426408 @default.
- W2165771317 cites W2065186430 @default.
- W2165771317 cites W2065223408 @default.
- W2165771317 cites W2074139688 @default.
- W2165771317 cites W2077868379 @default.
- W2165771317 cites W2078731300 @default.
- W2165771317 cites W2078838424 @default.
- W2165771317 cites W2079648751 @default.
- W2165771317 cites W2088522209 @default.
- W2165771317 cites W2100962132 @default.
- W2165771317 cites W2102458035 @default.
- W2165771317 cites W2103189780 @default.
- W2165771317 cites W2104381752 @default.
- W2165771317 cites W2107953152 @default.
- W2165771317 cites W2110506335 @default.
- W2165771317 cites W2111473359 @default.
- W2165771317 cites W2112376503 @default.
- W2165771317 cites W2112552796 @default.
- W2165771317 cites W2115082809 @default.
- W2165771317 cites W2115852037 @default.
- W2165771317 cites W2116033899 @default.
- W2165771317 cites W2126545892 @default.
- W2165771317 cites W2129483939 @default.
- W2165771317 cites W2142540707 @default.
- W2165771317 cites W2143453653 @default.
- W2165771317 cites W2145852322 @default.
- W2165771317 cites W2149964901 @default.
- W2165771317 cites W2157439685 @default.
- W2165771317 cites W2159106716 @default.
- W2165771317 cites W2164663173 @default.
- W2165771317 cites W2164793693 @default.
- W2165771317 cites W2169942443 @default.
- W2165771317 cites W2171050848 @default.
- W2165771317 cites W2274394856 @default.
- W2165771317 cites W2324141022 @default.
- W2165771317 cites W2325948779 @default.
- W2165771317 cites W2326402636 @default.
- W2165771317 cites W2497774030 @default.
- W2165771317 cites W3099427210 @default.
- W2165771317 cites W3107659843 @default.
- W2165771317 cites W3109619370 @default.
- W2165771317 cites W4234960194 @default.
- W2165771317 cites W4249478337 @default.
- W2165771317 doi "https://doi.org/10.2113/gsecongeo.95.5.971" @default.
- W2165771317 hasPublicationYear "2000" @default.
- W2165771317 type Work @default.
- W2165771317 sameAs 2165771317 @default.
- W2165771317 citedByCount "252" @default.
- W2165771317 countsByYear W21657713172012 @default.
- W2165771317 countsByYear W21657713172013 @default.
- W2165771317 countsByYear W21657713172014 @default.
- W2165771317 countsByYear W21657713172015 @default.
- W2165771317 countsByYear W21657713172016 @default.
- W2165771317 countsByYear W21657713172017 @default.
- W2165771317 countsByYear W21657713172018 @default.
- W2165771317 countsByYear W21657713172019 @default.