Matches in SemOpenAlex for { <https://semopenalex.org/work/W2165991108> ?p ?o ?g. }
- W2165991108 endingPage "2201" @default.
- W2165991108 startingPage "2191" @default.
- W2165991108 abstract "Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research." @default.
- W2165991108 created "2016-06-24" @default.
- W2165991108 creator A5024157505 @default.
- W2165991108 creator A5046608695 @default.
- W2165991108 creator A5062119492 @default.
- W2165991108 creator A5088976879 @default.
- W2165991108 date "2014-10-01" @default.
- W2165991108 modified "2023-10-17" @default.
- W2165991108 title "Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning" @default.
- W2165991108 cites W1991515142 @default.
- W2165991108 cites W2008925288 @default.
- W2165991108 cites W2021153764 @default.
- W2165991108 cites W2029657381 @default.
- W2165991108 cites W2083238230 @default.
- W2165991108 cites W2087386265 @default.
- W2165991108 cites W2087443150 @default.
- W2165991108 cites W2100495367 @default.
- W2165991108 cites W2108196201 @default.
- W2165991108 cites W2111807801 @default.
- W2165991108 cites W2116064496 @default.
- W2165991108 cites W2117130368 @default.
- W2165991108 cites W2131767615 @default.
- W2165991108 cites W2133747588 @default.
- W2165991108 cites W2136922672 @default.
- W2165991108 cites W2137393925 @default.
- W2165991108 cites W2139606794 @default.
- W2165991108 cites W2141948130 @default.
- W2165991108 cites W2145039203 @default.
- W2165991108 cites W2149600041 @default.
- W2165991108 cites W2150152686 @default.
- W2165991108 cites W2160299137 @default.
- W2165991108 cites W2166988467 @default.
- W2165991108 cites W2171234954 @default.
- W2165991108 cites W4239943352 @default.
- W2165991108 doi "https://doi.org/10.1109/tits.2014.2311123" @default.
- W2165991108 hasPublicationYear "2014" @default.
- W2165991108 type Work @default.
- W2165991108 sameAs 2165991108 @default.
- W2165991108 citedByCount "879" @default.
- W2165991108 countsByYear W21659911082015 @default.
- W2165991108 countsByYear W21659911082016 @default.
- W2165991108 countsByYear W21659911082017 @default.
- W2165991108 countsByYear W21659911082018 @default.
- W2165991108 countsByYear W21659911082019 @default.
- W2165991108 countsByYear W21659911082020 @default.
- W2165991108 countsByYear W21659911082021 @default.
- W2165991108 countsByYear W21659911082022 @default.
- W2165991108 countsByYear W21659911082023 @default.
- W2165991108 crossrefType "journal-article" @default.
- W2165991108 hasAuthorship W2165991108A5024157505 @default.
- W2165991108 hasAuthorship W2165991108A5046608695 @default.
- W2165991108 hasAuthorship W2165991108A5062119492 @default.
- W2165991108 hasAuthorship W2165991108A5088976879 @default.
- W2165991108 hasConcept C108583219 @default.
- W2165991108 hasConcept C119857082 @default.
- W2165991108 hasConcept C123657996 @default.
- W2165991108 hasConcept C127413603 @default.
- W2165991108 hasConcept C134306372 @default.
- W2165991108 hasConcept C136389625 @default.
- W2165991108 hasConcept C138885662 @default.
- W2165991108 hasConcept C142362112 @default.
- W2165991108 hasConcept C147176958 @default.
- W2165991108 hasConcept C153349607 @default.
- W2165991108 hasConcept C154945302 @default.
- W2165991108 hasConcept C177148314 @default.
- W2165991108 hasConcept C201995342 @default.
- W2165991108 hasConcept C2776401178 @default.
- W2165991108 hasConcept C2780451532 @default.
- W2165991108 hasConcept C28006648 @default.
- W2165991108 hasConcept C33923547 @default.
- W2165991108 hasConcept C41008148 @default.
- W2165991108 hasConcept C41895202 @default.
- W2165991108 hasConcept C47796450 @default.
- W2165991108 hasConcept C50644808 @default.
- W2165991108 hasConcept C8038995 @default.
- W2165991108 hasConcept C97385483 @default.
- W2165991108 hasConceptScore W2165991108C108583219 @default.
- W2165991108 hasConceptScore W2165991108C119857082 @default.
- W2165991108 hasConceptScore W2165991108C123657996 @default.
- W2165991108 hasConceptScore W2165991108C127413603 @default.
- W2165991108 hasConceptScore W2165991108C134306372 @default.
- W2165991108 hasConceptScore W2165991108C136389625 @default.
- W2165991108 hasConceptScore W2165991108C138885662 @default.
- W2165991108 hasConceptScore W2165991108C142362112 @default.
- W2165991108 hasConceptScore W2165991108C147176958 @default.
- W2165991108 hasConceptScore W2165991108C153349607 @default.
- W2165991108 hasConceptScore W2165991108C154945302 @default.
- W2165991108 hasConceptScore W2165991108C177148314 @default.
- W2165991108 hasConceptScore W2165991108C201995342 @default.
- W2165991108 hasConceptScore W2165991108C2776401178 @default.
- W2165991108 hasConceptScore W2165991108C2780451532 @default.
- W2165991108 hasConceptScore W2165991108C28006648 @default.
- W2165991108 hasConceptScore W2165991108C33923547 @default.
- W2165991108 hasConceptScore W2165991108C41008148 @default.
- W2165991108 hasConceptScore W2165991108C41895202 @default.
- W2165991108 hasConceptScore W2165991108C47796450 @default.
- W2165991108 hasConceptScore W2165991108C50644808 @default.
- W2165991108 hasConceptScore W2165991108C8038995 @default.