Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166006918> ?p ?o ?g. }
- W2166006918 endingPage "86" @default.
- W2166006918 startingPage "75" @default.
- W2166006918 abstract "The surface geothermal water chemistry and alteration mineralogy associated with rhyolitic rocks at Torfajökull central volcano, Iceland was studied. The geothermal waters ranged in pH and temperature from 2.33 to 9.77 and 6–98 °C, respectively, and was characterized by variable alteration products including amorphous silica, quartz, hematite, goethite, kaolinite, elemental sulfur, pyrite, anatase, montmorillonite. alunite, amorphous iron silicates, pyrite, goethite, hematite and illite. The chemical composition of these waters and the associated mineralogy is influenced by several processes occurring from the geothermal reservoir to the surface including boiling, mixing, degassing, oxidation and water–rock interaction. In order to quantify these processes and explain the observed geothermal surface water composition and mineralogy, a geochemical model was applied that involved three steps: (i) defining the composition of the end-member fluid types present in the system, (ii) applying a mixing model based on conservation of non-reactive elements and enthalpy (temperature) and (iii) quantifying the process of progressive fluid–rock interaction and secondary mineral formation in the surface zone. The model may be applied to any geothermal system. Geothermal waters at Torfajökull represent either a mixture of non-thermal water and condensed steam with insignificant fraction of boiled reservoir water or boiled reservoir water that has been mixed. Two types of steam-heated waters were observed, acid and carbonate rich, the difference thought to be related to the boiling process. Steam-heated carbonate waters are formed from <10% steam originated by boiling and phase segregation at >200 °C followed by mixing with non-thermal water at shallow depth whereas steam-heated acid waters are formed upon extensive boiling and steam condensation and mixing with non-thermal surface in the surface zone. The surface alteration mineralogy and associated elemental mobility is largely influenced by the formation mechanism and chemistry of the geothermal surface water in the surface zone. At acid pH and under oxidized conditions Na, K, Mg and Ca were observed to be mobile and leached out whereas Fe, Ti and to a less extent Si, were retained in the alteration product forming amarphous silica, kaolinite, anatase and pyrite as well as some smectites and sulfates. For steam-heated carbonate waters, Na and K were observed to be mobile whereas Fe and Si are retained in amorphous silica, ferrihydrites and iron rich silicates. Carbonates were not calculated or observed to form associated with carbonate springs. Magnesium, Ca and K were observed to be mobile at pH < 6 whereas they are quantitatively retained into smectites and eventually also zeolites and carbonates with increasing pH. As a consequence, the mobility of Mg and K and to a less extent Ca and Na are greatly reduced under alkaline conditions. Based on the above, the key factors controlling the fluid–rhyolite interaction under surface geothermal conditions (∼100 °C) are acid supply, oxidation state and extent of reaction. The surface geochemical exploration methods developed and applied here are suitable for any geothermal system in order to explore geochemical processes occurring in active geothermal systems including boiling and fluid mixing, fluid and elemental sources, reservoir fluid properties and when applied before and during geothermal exploitation and utilization how these may have changed in nature with time." @default.
- W2166006918 created "2016-06-24" @default.
- W2166006918 creator A5042295061 @default.
- W2166006918 creator A5054437736 @default.
- W2166006918 creator A5056663225 @default.
- W2166006918 date "2015-11-01" @default.
- W2166006918 modified "2023-09-27" @default.
- W2166006918 title "Surface water chemistry at Torfajökull, Iceland—Quantification of boiling, mixing, oxidation and water–rock interaction and reconstruction of reservoir fluid composition" @default.
- W2166006918 cites W1965167716 @default.
- W2166006918 cites W1965411955 @default.
- W2166006918 cites W1969537526 @default.
- W2166006918 cites W1988549403 @default.
- W2166006918 cites W1989281586 @default.
- W2166006918 cites W1992524555 @default.
- W2166006918 cites W1995973491 @default.
- W2166006918 cites W2000500304 @default.
- W2166006918 cites W2000559619 @default.
- W2166006918 cites W2001112241 @default.
- W2166006918 cites W2011198130 @default.
- W2166006918 cites W2018335072 @default.
- W2166006918 cites W2019841535 @default.
- W2166006918 cites W2022935824 @default.
- W2166006918 cites W2027790751 @default.
- W2166006918 cites W2028144277 @default.
- W2166006918 cites W2028514226 @default.
- W2166006918 cites W2038865080 @default.
- W2166006918 cites W2044575604 @default.
- W2166006918 cites W2046431125 @default.
- W2166006918 cites W2049813468 @default.
- W2166006918 cites W2051757039 @default.
- W2166006918 cites W2053837081 @default.
- W2166006918 cites W2056891847 @default.
- W2166006918 cites W2062197462 @default.
- W2166006918 cites W2068764982 @default.
- W2166006918 cites W2077868379 @default.
- W2166006918 cites W2086373855 @default.
- W2166006918 cites W2088522209 @default.
- W2166006918 cites W2090092840 @default.
- W2166006918 cites W2090968131 @default.
- W2166006918 cites W2093740361 @default.
- W2166006918 cites W2111473359 @default.
- W2166006918 cites W2168019960 @default.
- W2166006918 cites W2281641682 @default.
- W2166006918 cites W2325948779 @default.
- W2166006918 cites W2911377757 @default.
- W2166006918 cites W4243911478 @default.
- W2166006918 doi "https://doi.org/10.1016/j.geothermics.2015.09.007" @default.
- W2166006918 hasPublicationYear "2015" @default.
- W2166006918 type Work @default.
- W2166006918 sameAs 2166006918 @default.
- W2166006918 citedByCount "13" @default.
- W2166006918 countsByYear W21660069182017 @default.
- W2166006918 countsByYear W21660069182018 @default.
- W2166006918 countsByYear W21660069182019 @default.
- W2166006918 countsByYear W21660069182020 @default.
- W2166006918 countsByYear W21660069182021 @default.
- W2166006918 countsByYear W21660069182022 @default.
- W2166006918 countsByYear W21660069182023 @default.
- W2166006918 crossrefType "journal-article" @default.
- W2166006918 hasAuthorship W2166006918A5042295061 @default.
- W2166006918 hasAuthorship W2166006918A5054437736 @default.
- W2166006918 hasAuthorship W2166006918A5056663225 @default.
- W2166006918 hasConcept C111766609 @default.
- W2166006918 hasConcept C127313418 @default.
- W2166006918 hasConcept C150394285 @default.
- W2166006918 hasConcept C156622251 @default.
- W2166006918 hasConcept C165205528 @default.
- W2166006918 hasConcept C17409809 @default.
- W2166006918 hasConcept C178790620 @default.
- W2166006918 hasConcept C185592680 @default.
- W2166006918 hasConcept C199289684 @default.
- W2166006918 hasConcept C2776062231 @default.
- W2166006918 hasConcept C2776222295 @default.
- W2166006918 hasConcept C2777787761 @default.
- W2166006918 hasConcept C2779131772 @default.
- W2166006918 hasConcept C2779429093 @default.
- W2166006918 hasConcept C2779899878 @default.
- W2166006918 hasConcept C2780659211 @default.
- W2166006918 hasConcept C40212044 @default.
- W2166006918 hasConcept C8058405 @default.
- W2166006918 hasConceptScore W2166006918C111766609 @default.
- W2166006918 hasConceptScore W2166006918C127313418 @default.
- W2166006918 hasConceptScore W2166006918C150394285 @default.
- W2166006918 hasConceptScore W2166006918C156622251 @default.
- W2166006918 hasConceptScore W2166006918C165205528 @default.
- W2166006918 hasConceptScore W2166006918C17409809 @default.
- W2166006918 hasConceptScore W2166006918C178790620 @default.
- W2166006918 hasConceptScore W2166006918C185592680 @default.
- W2166006918 hasConceptScore W2166006918C199289684 @default.
- W2166006918 hasConceptScore W2166006918C2776062231 @default.
- W2166006918 hasConceptScore W2166006918C2776222295 @default.
- W2166006918 hasConceptScore W2166006918C2777787761 @default.
- W2166006918 hasConceptScore W2166006918C2779131772 @default.
- W2166006918 hasConceptScore W2166006918C2779429093 @default.
- W2166006918 hasConceptScore W2166006918C2779899878 @default.
- W2166006918 hasConceptScore W2166006918C2780659211 @default.
- W2166006918 hasConceptScore W2166006918C40212044 @default.
- W2166006918 hasConceptScore W2166006918C8058405 @default.