Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166096070> ?p ?o ?g. }
- W2166096070 endingPage "2069" @default.
- W2166096070 startingPage "2061" @default.
- W2166096070 abstract "The purpose of this study is to explore the use of classification regression trees (CART) in predicting, in the dose-independent range, the fraction dose absorbed in humans. Since the results from clinical formulations in humans were used for training the model, a hypothetical state of drug molecules already dissolved in the intestinal fluid was adopted. Therefore, the molecular attributes affecting dissolution were not considered in the model. As a result, the model projects the highest achievable fraction dose absorbed, providing a reference point for manipulating the formulations or solid states to optimize oral clinical efficacy. A set of approximately 1260 structures and their human oral pharmacokinetic data, including bioavailability and/or absorption and/or radio-labeled studies, were used, with 899 compounds as the training set and 362 the test set. The numerical range of the fraction dose absorbed, 0 to 1, was divided into 6 classes with each class having a size of approximately 0.16. A set of 28 structural descriptors was used for modeling oral absorption without considering active transport. Then, a separate branch was created for modeling oral absorption involving active transport. The AAE of the training set was 0.12 and those of five test sets ranged from 0.17 to 0.2. In terms of classification, two test sets of unpublished, proprietary compounds showed 79% to 86% prediction when the predicted values fallen within ± one class of real values were considered predicted. Overall, the computational errors from all the test sets of diverse structures were similar and reasonably acceptable. As compared to artificial membranes for ranking drug absorption potential, prediction by the CART model is considered fast and reasonably accurate for accelerating drug discovery. One can not only improve continuously the accuracy of CART computations by expanding the chemical space of the training set but also calculate the statistical errors associated with individual decision paths resulting from the training set to determine whether to accept individual computations of any test sets." @default.
- W2166096070 created "2016-06-24" @default.
- W2166096070 creator A5009393979 @default.
- W2166096070 creator A5015413878 @default.
- W2166096070 creator A5024714993 @default.
- W2166096070 creator A5030605923 @default.
- W2166096070 creator A5044678495 @default.
- W2166096070 creator A5057729621 @default.
- W2166096070 creator A5059183733 @default.
- W2166096070 creator A5065686462 @default.
- W2166096070 creator A5087812763 @default.
- W2166096070 creator A5070483674 @default.
- W2166096070 date "2004-10-22" @default.
- W2166096070 modified "2023-10-17" @default.
- W2166096070 title "Use of Classification Regression Tree in Predicting Oral Absorption in Humans" @default.
- W2166096070 cites W1487798739 @default.
- W2166096070 cites W1526007548 @default.
- W2166096070 cites W1562218083 @default.
- W2166096070 cites W1973428197 @default.
- W2166096070 cites W1985678179 @default.
- W2166096070 cites W1989554722 @default.
- W2166096070 cites W1995892465 @default.
- W2166096070 cites W1998700502 @default.
- W2166096070 cites W2002925793 @default.
- W2166096070 cites W2024322045 @default.
- W2166096070 cites W2028784178 @default.
- W2166096070 cites W2031553055 @default.
- W2166096070 cites W2033495141 @default.
- W2166096070 cites W2041821365 @default.
- W2166096070 cites W2057617701 @default.
- W2166096070 cites W2062828534 @default.
- W2166096070 cites W2066273100 @default.
- W2166096070 cites W2073025812 @default.
- W2166096070 cites W2092598092 @default.
- W2166096070 cites W2093084894 @default.
- W2166096070 cites W2162324851 @default.
- W2166096070 cites W2170419349 @default.
- W2166096070 cites W4248107770 @default.
- W2166096070 doi "https://doi.org/10.1021/ci040023n" @default.
- W2166096070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15554676" @default.
- W2166096070 hasPublicationYear "2004" @default.
- W2166096070 type Work @default.
- W2166096070 sameAs 2166096070 @default.
- W2166096070 citedByCount "43" @default.
- W2166096070 countsByYear W21660960702012 @default.
- W2166096070 countsByYear W21660960702013 @default.
- W2166096070 countsByYear W21660960702014 @default.
- W2166096070 countsByYear W21660960702015 @default.
- W2166096070 countsByYear W21660960702018 @default.
- W2166096070 countsByYear W21660960702019 @default.
- W2166096070 countsByYear W21660960702022 @default.
- W2166096070 crossrefType "journal-article" @default.
- W2166096070 hasAuthorship W2166096070A5009393979 @default.
- W2166096070 hasAuthorship W2166096070A5015413878 @default.
- W2166096070 hasAuthorship W2166096070A5024714993 @default.
- W2166096070 hasAuthorship W2166096070A5030605923 @default.
- W2166096070 hasAuthorship W2166096070A5044678495 @default.
- W2166096070 hasAuthorship W2166096070A5057729621 @default.
- W2166096070 hasAuthorship W2166096070A5059183733 @default.
- W2166096070 hasAuthorship W2166096070A5065686462 @default.
- W2166096070 hasAuthorship W2166096070A5070483674 @default.
- W2166096070 hasAuthorship W2166096070A5087812763 @default.
- W2166096070 hasConcept C105795698 @default.
- W2166096070 hasConcept C112705442 @default.
- W2166096070 hasConcept C113174947 @default.
- W2166096070 hasConcept C125287762 @default.
- W2166096070 hasConcept C134306372 @default.
- W2166096070 hasConcept C149629883 @default.
- W2166096070 hasConcept C152877465 @default.
- W2166096070 hasConcept C154945302 @default.
- W2166096070 hasConcept C159985019 @default.
- W2166096070 hasConcept C169903167 @default.
- W2166096070 hasConcept C177264268 @default.
- W2166096070 hasConcept C181389837 @default.
- W2166096070 hasConcept C185592680 @default.
- W2166096070 hasConcept C186060115 @default.
- W2166096070 hasConcept C192562407 @default.
- W2166096070 hasConcept C199360897 @default.
- W2166096070 hasConcept C33923547 @default.
- W2166096070 hasConcept C41008148 @default.
- W2166096070 hasConcept C43617362 @default.
- W2166096070 hasConcept C48921125 @default.
- W2166096070 hasConcept C51632099 @default.
- W2166096070 hasConcept C71924100 @default.
- W2166096070 hasConcept C83546350 @default.
- W2166096070 hasConcept C86803240 @default.
- W2166096070 hasConcept C98274493 @default.
- W2166096070 hasConceptScore W2166096070C105795698 @default.
- W2166096070 hasConceptScore W2166096070C112705442 @default.
- W2166096070 hasConceptScore W2166096070C113174947 @default.
- W2166096070 hasConceptScore W2166096070C125287762 @default.
- W2166096070 hasConceptScore W2166096070C134306372 @default.
- W2166096070 hasConceptScore W2166096070C149629883 @default.
- W2166096070 hasConceptScore W2166096070C152877465 @default.
- W2166096070 hasConceptScore W2166096070C154945302 @default.
- W2166096070 hasConceptScore W2166096070C159985019 @default.
- W2166096070 hasConceptScore W2166096070C169903167 @default.
- W2166096070 hasConceptScore W2166096070C177264268 @default.