Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166098223> ?p ?o ?g. }
- W2166098223 endingPage "30" @default.
- W2166098223 startingPage "13" @default.
- W2166098223 abstract "Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4− = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29–75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH− in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4− present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone." @default.
- W2166098223 created "2016-06-24" @default.
- W2166098223 creator A5001322240 @default.
- W2166098223 creator A5002171426 @default.
- W2166098223 creator A5010777390 @default.
- W2166098223 creator A5014767314 @default.
- W2166098223 creator A5017770815 @default.
- W2166098223 creator A5037864366 @default.
- W2166098223 creator A5040119093 @default.
- W2166098223 creator A5057104243 @default.
- W2166098223 creator A5062919883 @default.
- W2166098223 creator A5077087475 @default.
- W2166098223 date "2004-01-01" @default.
- W2166098223 modified "2023-10-13" @default.
- W2166098223 title "Chromium speciation and mobility in a high level nuclear waste vadose zone plume" @default.
- W2166098223 cites W106527466 @default.
- W2166098223 cites W1560041657 @default.
- W2166098223 cites W1971378759 @default.
- W2166098223 cites W1973055601 @default.
- W2166098223 cites W1979067106 @default.
- W2166098223 cites W1983846984 @default.
- W2166098223 cites W1984556242 @default.
- W2166098223 cites W1984884322 @default.
- W2166098223 cites W1986745257 @default.
- W2166098223 cites W1987447231 @default.
- W2166098223 cites W1989101325 @default.
- W2166098223 cites W1993325733 @default.
- W2166098223 cites W1996752951 @default.
- W2166098223 cites W1998235725 @default.
- W2166098223 cites W2008007409 @default.
- W2166098223 cites W2026923643 @default.
- W2166098223 cites W2027386426 @default.
- W2166098223 cites W2031262489 @default.
- W2166098223 cites W2031744573 @default.
- W2166098223 cites W2031772489 @default.
- W2166098223 cites W2039297284 @default.
- W2166098223 cites W2039789664 @default.
- W2166098223 cites W2041430101 @default.
- W2166098223 cites W2042552267 @default.
- W2166098223 cites W2050507226 @default.
- W2166098223 cites W2053751618 @default.
- W2166098223 cites W2058835043 @default.
- W2166098223 cites W2060638090 @default.
- W2166098223 cites W2061268866 @default.
- W2166098223 cites W2065387926 @default.
- W2166098223 cites W2066537288 @default.
- W2166098223 cites W2067958795 @default.
- W2166098223 cites W2076612911 @default.
- W2166098223 cites W2081261395 @default.
- W2166098223 cites W2083204493 @default.
- W2166098223 cites W2083508247 @default.
- W2166098223 cites W2085192355 @default.
- W2166098223 cites W2087935491 @default.
- W2166098223 cites W2092128919 @default.
- W2166098223 cites W2093619349 @default.
- W2166098223 cites W2094129175 @default.
- W2166098223 cites W2095111473 @default.
- W2166098223 cites W2131039514 @default.
- W2166098223 cites W2135476955 @default.
- W2166098223 cites W2138743792 @default.
- W2166098223 cites W2163256632 @default.
- W2166098223 cites W2328521826 @default.
- W2166098223 cites W2900369416 @default.
- W2166098223 cites W4234685122 @default.
- W2166098223 cites W4237278785 @default.
- W2166098223 doi "https://doi.org/10.1016/s0016-7037(03)00417-4" @default.
- W2166098223 hasPublicationYear "2004" @default.
- W2166098223 type Work @default.
- W2166098223 sameAs 2166098223 @default.
- W2166098223 citedByCount "105" @default.
- W2166098223 countsByYear W21660982232012 @default.
- W2166098223 countsByYear W21660982232013 @default.
- W2166098223 countsByYear W21660982232014 @default.
- W2166098223 countsByYear W21660982232015 @default.
- W2166098223 countsByYear W21660982232016 @default.
- W2166098223 countsByYear W21660982232017 @default.
- W2166098223 countsByYear W21660982232018 @default.
- W2166098223 countsByYear W21660982232019 @default.
- W2166098223 countsByYear W21660982232020 @default.
- W2166098223 countsByYear W21660982232021 @default.
- W2166098223 countsByYear W21660982232022 @default.
- W2166098223 countsByYear W21660982232023 @default.
- W2166098223 crossrefType "journal-article" @default.
- W2166098223 hasAuthorship W2166098223A5001322240 @default.
- W2166098223 hasAuthorship W2166098223A5002171426 @default.
- W2166098223 hasAuthorship W2166098223A5010777390 @default.
- W2166098223 hasAuthorship W2166098223A5014767314 @default.
- W2166098223 hasAuthorship W2166098223A5017770815 @default.
- W2166098223 hasAuthorship W2166098223A5037864366 @default.
- W2166098223 hasAuthorship W2166098223A5040119093 @default.
- W2166098223 hasAuthorship W2166098223A5057104243 @default.
- W2166098223 hasAuthorship W2166098223A5062919883 @default.
- W2166098223 hasAuthorship W2166098223A5077087475 @default.
- W2166098223 hasBestOaLocation W21660982232 @default.
- W2166098223 hasConcept C107054158 @default.
- W2166098223 hasConcept C107872376 @default.
- W2166098223 hasConcept C121332964 @default.
- W2166098223 hasConcept C127313418 @default.