Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166155124> ?p ?o ?g. }
- W2166155124 endingPage "338" @default.
- W2166155124 startingPage "327" @default.
- W2166155124 abstract "This article reports a study that applies the rough sets algorithm to tourism demand analysis. Empirical outcomes are a set of automated but practical decision rules for practitioners from data that have a high degree of vagueness. We also introduce two new measures of qualitative noneconomic factors, namely a leisure time index and climate index into the forecasting framework. On the basis of long-haul U.S. and U.K. tourism demand for Hong Kong, empirical results show that leisure time and climate have stronger impacts on tourist arrivals than economic factors. Comprehensible decision rules are generated and tourism demand forecasts attain an accuracy of up to 80%. The findings put forward the importance of qualitative non- economic factors in travel motivation theory and demand analysis." @default.
- W2166155124 created "2016-06-24" @default.
- W2166155124 creator A5005460332 @default.
- W2166155124 creator A5012123938 @default.
- W2166155124 creator A5034580202 @default.
- W2166155124 date "2008-02-01" @default.
- W2166155124 modified "2023-09-22" @default.
- W2166155124 title "Analyzing and Forecasting Tourism Demand: A Rough Sets Approach" @default.
- W2166155124 cites W1101207318 @default.
- W2166155124 cites W1493240620 @default.
- W2166155124 cites W1495593618 @default.
- W2166155124 cites W1496225535 @default.
- W2166155124 cites W1515036909 @default.
- W2166155124 cites W1551385575 @default.
- W2166155124 cites W1567546275 @default.
- W2166155124 cites W1570622893 @default.
- W2166155124 cites W1603892926 @default.
- W2166155124 cites W1605948227 @default.
- W2166155124 cites W1768416179 @default.
- W2166155124 cites W1967495926 @default.
- W2166155124 cites W1969531323 @default.
- W2166155124 cites W1972725533 @default.
- W2166155124 cites W1978030759 @default.
- W2166155124 cites W1978819461 @default.
- W2166155124 cites W1980861610 @default.
- W2166155124 cites W1981232248 @default.
- W2166155124 cites W1984468169 @default.
- W2166155124 cites W1988316245 @default.
- W2166155124 cites W1990915212 @default.
- W2166155124 cites W2031331974 @default.
- W2166155124 cites W2046278029 @default.
- W2166155124 cites W2049521815 @default.
- W2166155124 cites W2064840593 @default.
- W2166155124 cites W2067861979 @default.
- W2166155124 cites W2092003174 @default.
- W2166155124 cites W2097276543 @default.
- W2166155124 cites W2123165578 @default.
- W2166155124 cites W2128130077 @default.
- W2166155124 cites W2147881534 @default.
- W2166155124 cites W2149509893 @default.
- W2166155124 cites W2172138295 @default.
- W2166155124 cites W241932744 @default.
- W2166155124 cites W4232953319 @default.
- W2166155124 cites W4242195075 @default.
- W2166155124 doi "https://doi.org/10.1177/0047287506304047" @default.
- W2166155124 hasPublicationYear "2008" @default.
- W2166155124 type Work @default.
- W2166155124 sameAs 2166155124 @default.
- W2166155124 citedByCount "78" @default.
- W2166155124 countsByYear W21661551242012 @default.
- W2166155124 countsByYear W21661551242013 @default.
- W2166155124 countsByYear W21661551242014 @default.
- W2166155124 countsByYear W21661551242015 @default.
- W2166155124 countsByYear W21661551242016 @default.
- W2166155124 countsByYear W21661551242017 @default.
- W2166155124 countsByYear W21661551242018 @default.
- W2166155124 countsByYear W21661551242019 @default.
- W2166155124 countsByYear W21661551242020 @default.
- W2166155124 countsByYear W21661551242021 @default.
- W2166155124 countsByYear W21661551242022 @default.
- W2166155124 crossrefType "journal-article" @default.
- W2166155124 hasAuthorship W2166155124A5005460332 @default.
- W2166155124 hasAuthorship W2166155124A5012123938 @default.
- W2166155124 hasAuthorship W2166155124A5034580202 @default.
- W2166155124 hasConcept C105795698 @default.
- W2166155124 hasConcept C111012933 @default.
- W2166155124 hasConcept C120936955 @default.
- W2166155124 hasConcept C124101348 @default.
- W2166155124 hasConcept C136764020 @default.
- W2166155124 hasConcept C144133560 @default.
- W2166155124 hasConcept C149782125 @default.
- W2166155124 hasConcept C154945302 @default.
- W2166155124 hasConcept C162324750 @default.
- W2166155124 hasConcept C162853370 @default.
- W2166155124 hasConcept C166957645 @default.
- W2166155124 hasConcept C177264268 @default.
- W2166155124 hasConcept C18918823 @default.
- W2166155124 hasConcept C193809577 @default.
- W2166155124 hasConcept C199360897 @default.
- W2166155124 hasConcept C205649164 @default.
- W2166155124 hasConcept C2776825360 @default.
- W2166155124 hasConcept C2777382242 @default.
- W2166155124 hasConcept C33923547 @default.
- W2166155124 hasConcept C41008148 @default.
- W2166155124 hasConcept C42475967 @default.
- W2166155124 hasConcept C58166 @default.
- W2166155124 hasConceptScore W2166155124C105795698 @default.
- W2166155124 hasConceptScore W2166155124C111012933 @default.
- W2166155124 hasConceptScore W2166155124C120936955 @default.
- W2166155124 hasConceptScore W2166155124C124101348 @default.
- W2166155124 hasConceptScore W2166155124C136764020 @default.
- W2166155124 hasConceptScore W2166155124C144133560 @default.
- W2166155124 hasConceptScore W2166155124C149782125 @default.
- W2166155124 hasConceptScore W2166155124C154945302 @default.
- W2166155124 hasConceptScore W2166155124C162324750 @default.
- W2166155124 hasConceptScore W2166155124C162853370 @default.
- W2166155124 hasConceptScore W2166155124C166957645 @default.
- W2166155124 hasConceptScore W2166155124C177264268 @default.