Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166164867> ?p ?o ?g. }
- W2166164867 endingPage "1403" @default.
- W2166164867 startingPage "1393" @default.
- W2166164867 abstract "When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However, the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). The possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone. Basic knowledge on the probability theory is first recalled, followed by a detailed description of epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted as Independent Random Set, IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible. The results highlight the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis generates a single probability distribution, the IRS method yields a family of probability distributions bounded by an upper and a lower distribution. The distance between these two bounds is the consequence of the incomplete character of information pertaining to certain parameters. In a real situation, an excessive distance between these two bounds might motivate the decision-maker to increase the information base regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not ensue from a purely probabilistic calculation based on subjective (postulated) distributions (despite lack of information), because there is no way of distinguishing, in the variability of the calculated result, what comes from true randomness and what comes from incomplete information. The method presented offers the advantage of putting the focus on the information rather than deciding a priori of how to represent it. If the information is rich, then a purely statistical representation mode is adequate, but if the information is scarce, then it may be better conveyed by possibility distributions." @default.
- W2166164867 created "2016-06-24" @default.
- W2166164867 creator A5016875614 @default.
- W2166164867 creator A5030302837 @default.
- W2166164867 creator A5071412356 @default.
- W2166164867 creator A5078359435 @default.
- W2166164867 date "2013-04-09" @default.
- W2166164867 modified "2023-10-14" @default.
- W2166164867 title "Stochastic and epistemic uncertainty propagation in LCA" @default.
- W2166164867 cites W139978931 @default.
- W2166164867 cites W1789199237 @default.
- W2166164867 cites W1964552851 @default.
- W2166164867 cites W1966158282 @default.
- W2166164867 cites W1974156822 @default.
- W2166164867 cites W1974461577 @default.
- W2166164867 cites W1976442649 @default.
- W2166164867 cites W1977438862 @default.
- W2166164867 cites W1978402103 @default.
- W2166164867 cites W1988585444 @default.
- W2166164867 cites W1991542424 @default.
- W2166164867 cites W1992711545 @default.
- W2166164867 cites W1996429783 @default.
- W2166164867 cites W2009707624 @default.
- W2166164867 cites W2014289259 @default.
- W2166164867 cites W2017172185 @default.
- W2166164867 cites W2018064580 @default.
- W2166164867 cites W2020127023 @default.
- W2166164867 cites W2022571613 @default.
- W2166164867 cites W2030643989 @default.
- W2166164867 cites W2048074138 @default.
- W2166164867 cites W2050212459 @default.
- W2166164867 cites W2058062479 @default.
- W2166164867 cites W2062161631 @default.
- W2166164867 cites W2063469746 @default.
- W2166164867 cites W2084510084 @default.
- W2166164867 cites W2101787548 @default.
- W2166164867 cites W2116224228 @default.
- W2166164867 cites W2121323749 @default.
- W2166164867 cites W2132329975 @default.
- W2166164867 cites W2153275544 @default.
- W2166164867 cites W2154307847 @default.
- W2166164867 cites W2160209952 @default.
- W2166164867 cites W2170100366 @default.
- W2166164867 cites W2170365020 @default.
- W2166164867 cites W4214637188 @default.
- W2166164867 cites W4234525778 @default.
- W2166164867 cites W4246039580 @default.
- W2166164867 cites W4301347335 @default.
- W2166164867 doi "https://doi.org/10.1007/s11367-013-0572-6" @default.
- W2166164867 hasPublicationYear "2013" @default.
- W2166164867 type Work @default.
- W2166164867 sameAs 2166164867 @default.
- W2166164867 citedByCount "56" @default.
- W2166164867 countsByYear W21661648672014 @default.
- W2166164867 countsByYear W21661648672015 @default.
- W2166164867 countsByYear W21661648672016 @default.
- W2166164867 countsByYear W21661648672017 @default.
- W2166164867 countsByYear W21661648672018 @default.
- W2166164867 countsByYear W21661648672019 @default.
- W2166164867 countsByYear W21661648672020 @default.
- W2166164867 countsByYear W21661648672021 @default.
- W2166164867 countsByYear W21661648672022 @default.
- W2166164867 countsByYear W21661648672023 @default.
- W2166164867 crossrefType "journal-article" @default.
- W2166164867 hasAuthorship W2166164867A5016875614 @default.
- W2166164867 hasAuthorship W2166164867A5030302837 @default.
- W2166164867 hasAuthorship W2166164867A5071412356 @default.
- W2166164867 hasAuthorship W2166164867A5078359435 @default.
- W2166164867 hasBestOaLocation W21661648672 @default.
- W2166164867 hasConcept C105795698 @default.
- W2166164867 hasConcept C107673813 @default.
- W2166164867 hasConcept C122123141 @default.
- W2166164867 hasConcept C122203268 @default.
- W2166164867 hasConcept C123614077 @default.
- W2166164867 hasConcept C130648207 @default.
- W2166164867 hasConcept C137912672 @default.
- W2166164867 hasConcept C149441793 @default.
- W2166164867 hasConcept C154945302 @default.
- W2166164867 hasConcept C177803969 @default.
- W2166164867 hasConcept C18653775 @default.
- W2166164867 hasConcept C19499675 @default.
- W2166164867 hasConcept C195579931 @default.
- W2166164867 hasConcept C32230216 @default.
- W2166164867 hasConcept C33923547 @default.
- W2166164867 hasConcept C41008148 @default.
- W2166164867 hasConcept C42011625 @default.
- W2166164867 hasConcept C49698424 @default.
- W2166164867 hasConcept C49937458 @default.
- W2166164867 hasConcept C57830394 @default.
- W2166164867 hasConcept C58166 @default.
- W2166164867 hasConceptScore W2166164867C105795698 @default.
- W2166164867 hasConceptScore W2166164867C107673813 @default.
- W2166164867 hasConceptScore W2166164867C122123141 @default.
- W2166164867 hasConceptScore W2166164867C122203268 @default.
- W2166164867 hasConceptScore W2166164867C123614077 @default.
- W2166164867 hasConceptScore W2166164867C130648207 @default.
- W2166164867 hasConceptScore W2166164867C137912672 @default.
- W2166164867 hasConceptScore W2166164867C149441793 @default.