Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166218211> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2166218211 endingPage "7854" @default.
- W2166218211 startingPage "7853" @default.
- W2166218211 abstract "In order to better understand the relationships between molecular structure and vibrational dynamics, we have investigated the rates of vibrational relaxation (VR) of carbon monoxide bound to the active site of synthetic metalloporphyrin complexes. Here VR is used to denote Vibrational energy relaxation, the loss of energy from vibrationally excited CO to the rest of the system. VR rates were determined using picosecond mid-infrared (mid-IR) pump-probe experiments.1,2 In this work, we have investigated a large number of heme complexes and find a remarkable correlation between the vibrational lifetime and the carbonyl stretching frequency. By changing the metal atom, the trans axial ligand, and the porphyrin substituents, it becomes possible to tune the vibrational relaxation lifetime of CO over about a factor of 4. Never before has virtually continuous control of a vibrational lifetime been observed in a condensed phase polyatomic molecule. Loss of vibrational energy from CO inherently involves anharmonic coupling between the carbonyl vibrational fundamental and its surroundings.3 In broad terms, there are three ways this might occur, as illustrated schematically in Figure 1. VR might be a purely intramolecular process, involving COto-metalloporphyrin energy transfer via the covalent metalloporphyrin-CO bonds. There are both σand π-orbitals involved in M-CO bonding; the π-bonds are formed by backbonding, i.e., back-donation from the metal dπ and porphyrin pπ orbitals to the π* antibonding orbitals of CO.4 Alternatively, carbonyl VR might be a purely intermolecular process, involving CO-to-solvent energy transfer via nonbonded interactions. Finally, VR might involve a mixture of intermolecular and intramolecular processes. For example, some of the excess energy might be transferred to porphyrin vibrations and the remainder to low-frequency collective vibrations of the solvent (instantaneous normal modes or solvent phonons).5 In order to establish the mechanism of carbonyl VR, we systematically varied the structure of the heme using different metal atoms in an isoelectronic series, different porphyrins (which are the ligands cis to the CO), and different trans axial ligands. In addition, experiments were performed using different solvents and isotopic substitution with 13CO. We believe that the dominant mechanism of VR involves intramolecular anharmonic coupling from CO to the metalloporphyrin, via the metalloporphyrin-CO π-bonds, rather than the metal-CO σ-bonds. Structural and electronic factors that increase backbonding decrease both νCO and the VR lifetime by increasing the through π-bond coupling.6 The preparation of the metalloporphyrin complexes followed standard literature methods.7,8 The pump-probe experiment measures the vibrational lifetime of the CO stretching mode,1,9 which, for the compounds studied here, lies in the 1980-1880 cm-1 range. Pump-probe measurements were performed at the Stanford Free Electron Laser Center, as described in detail elsewhere.1 In Figure 2, we plot the VR rate versus carbonyl stretching frequency in CH2Cl2 solutions for M(porph)(CO)(L) for two different porphyrins (TPP and PHDME), three metals (M ) Fe, Ru, Os), and five nitrogenous ligands. We observe a very strong correlation between the VR rate and the carbonyl" @default.
- W2166218211 created "2016-06-24" @default.
- W2166218211 creator A5020817205 @default.
- W2166218211 creator A5048864082 @default.
- W2166218211 creator A5075047143 @default.
- W2166218211 creator A5078149381 @default.
- W2166218211 creator A5083805658 @default.
- W2166218211 creator A5090080904 @default.
- W2166218211 date "1996-01-01" @default.
- W2166218211 modified "2023-09-27" @default.
- W2166218211 title "Vibrational Relaxation in Metalloporphyrin CO Complexes" @default.
- W2166218211 cites W1965023349 @default.
- W2166218211 cites W1990759388 @default.
- W2166218211 cites W2002204044 @default.
- W2166218211 cites W2007744705 @default.
- W2166218211 cites W2023306993 @default.
- W2166218211 cites W2031447738 @default.
- W2166218211 cites W2032398413 @default.
- W2166218211 cites W2061162702 @default.
- W2166218211 cites W2065347736 @default.
- W2166218211 cites W2083960792 @default.
- W2166218211 cites W2088452668 @default.
- W2166218211 cites W2096700300 @default.
- W2166218211 cites W2098759667 @default.
- W2166218211 cites W2128508328 @default.
- W2166218211 cites W2146979196 @default.
- W2166218211 doi "https://doi.org/10.1021/ja961494w" @default.
- W2166218211 hasPublicationYear "1996" @default.
- W2166218211 type Work @default.
- W2166218211 sameAs 2166218211 @default.
- W2166218211 citedByCount "28" @default.
- W2166218211 countsByYear W21662182112013 @default.
- W2166218211 countsByYear W21662182112014 @default.
- W2166218211 countsByYear W21662182112015 @default.
- W2166218211 countsByYear W21662182112016 @default.
- W2166218211 countsByYear W21662182112019 @default.
- W2166218211 countsByYear W21662182112021 @default.
- W2166218211 countsByYear W21662182112022 @default.
- W2166218211 crossrefType "journal-article" @default.
- W2166218211 hasAuthorship W2166218211A5020817205 @default.
- W2166218211 hasAuthorship W2166218211A5048864082 @default.
- W2166218211 hasAuthorship W2166218211A5075047143 @default.
- W2166218211 hasAuthorship W2166218211A5078149381 @default.
- W2166218211 hasAuthorship W2166218211A5083805658 @default.
- W2166218211 hasAuthorship W2166218211A5090080904 @default.
- W2166218211 hasConcept C147597530 @default.
- W2166218211 hasConcept C15744967 @default.
- W2166218211 hasConcept C178790620 @default.
- W2166218211 hasConcept C185592680 @default.
- W2166218211 hasConcept C2776029896 @default.
- W2166218211 hasConcept C2779480358 @default.
- W2166218211 hasConcept C32909587 @default.
- W2166218211 hasConcept C75473681 @default.
- W2166218211 hasConcept C77805123 @default.
- W2166218211 hasConcept C84662259 @default.
- W2166218211 hasConceptScore W2166218211C147597530 @default.
- W2166218211 hasConceptScore W2166218211C15744967 @default.
- W2166218211 hasConceptScore W2166218211C178790620 @default.
- W2166218211 hasConceptScore W2166218211C185592680 @default.
- W2166218211 hasConceptScore W2166218211C2776029896 @default.
- W2166218211 hasConceptScore W2166218211C2779480358 @default.
- W2166218211 hasConceptScore W2166218211C32909587 @default.
- W2166218211 hasConceptScore W2166218211C75473681 @default.
- W2166218211 hasConceptScore W2166218211C77805123 @default.
- W2166218211 hasConceptScore W2166218211C84662259 @default.
- W2166218211 hasIssue "33" @default.
- W2166218211 hasLocation W21662182111 @default.
- W2166218211 hasOpenAccess W2166218211 @default.
- W2166218211 hasPrimaryLocation W21662182111 @default.
- W2166218211 hasRelatedWork W1997945744 @default.
- W2166218211 hasRelatedWork W2015803544 @default.
- W2166218211 hasRelatedWork W2043968861 @default.
- W2166218211 hasRelatedWork W2050820941 @default.
- W2166218211 hasRelatedWork W2064262616 @default.
- W2166218211 hasRelatedWork W2404031377 @default.
- W2166218211 hasRelatedWork W2511835712 @default.
- W2166218211 hasRelatedWork W2614421689 @default.
- W2166218211 hasRelatedWork W2953310253 @default.
- W2166218211 hasRelatedWork W3036745168 @default.
- W2166218211 hasVolume "118" @default.
- W2166218211 isParatext "false" @default.
- W2166218211 isRetracted "false" @default.
- W2166218211 magId "2166218211" @default.
- W2166218211 workType "article" @default.