Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166573023> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2166573023 endingPage "89" @default.
- W2166573023 startingPage "73" @default.
- W2166573023 abstract "ABSTRACT Unnatural control chart patterns (CCPs) are associated with a particular set of assignable causes for process variation. Hence, effectively recognizing CCPs can substantially narrow down the set of possible causes to be examined, and accelerate the diagnostic search. Recently, machine-learning techniques, especially the artificial neural network (ANN), have been widely used as an effective tool for CCP recognition (CCPR) tasks. Most ANN applications in CCPR have been using static supervised ANNs, such as back propagation networks (BPNs) and learning vector quantization (LVQ) networks. The false recognition problem (i.e. the patterns are misclassified) commonly encountered for these ANN-based CCPR models is mainly due to the fact that the static ANNs cannot appropriately deal with dynamic patterns, such as CCPs. In this research, a dynamic training algorithm is designed to provide an LVQ network-based CCPR model the capability to on-line recognize the dynamic CCPs that vary over time. The numerical results using simulation show that the dynamically trained LVQ network-based model proposed in this research performs much better than other ANN-based models reported in literature with respective to recognition accuracy and speed. Although this research considers the specific application of a real-time CCPR model based on an LVQ network, the proposed dynamic training algorithm could be applied to CCPR systems based on other ANN architectures in general." @default.
- W2166573023 created "2016-06-24" @default.
- W2166573023 creator A5017372589 @default.
- W2166573023 creator A5039535862 @default.
- W2166573023 date "2008-01-01" @default.
- W2166573023 modified "2023-09-27" @default.
- W2166573023 title "EFFECTIVE PATTERN RECOGNITION OF CONTROL CHARTS USING A DYNAMICALLY TRAINED LEARNING VECTOR QUANTIZATION NETWORK" @default.
- W2166573023 cites W1673714517 @default.
- W2166573023 cites W1761621746 @default.
- W2166573023 cites W1964168965 @default.
- W2166573023 cites W1975267178 @default.
- W2166573023 cites W1999269011 @default.
- W2166573023 cites W2003454866 @default.
- W2166573023 cites W2013897941 @default.
- W2166573023 cites W2015287556 @default.
- W2166573023 cites W2015974984 @default.
- W2166573023 cites W2023111310 @default.
- W2166573023 cites W2024962697 @default.
- W2166573023 cites W2028786177 @default.
- W2166573023 cites W2030991003 @default.
- W2166573023 cites W2046117049 @default.
- W2166573023 cites W2049597952 @default.
- W2166573023 cites W2071521303 @default.
- W2166573023 cites W2088702142 @default.
- W2166573023 cites W2088882986 @default.
- W2166573023 cites W2110437556 @default.
- W2166573023 cites W2117671523 @default.
- W2166573023 cites W2125290375 @default.
- W2166573023 cites W2143503258 @default.
- W2166573023 cites W2161403998 @default.
- W2166573023 cites W2168487341 @default.
- W2166573023 cites W2256679588 @default.
- W2166573023 cites W2474476351 @default.
- W2166573023 cites W2791282478 @default.
- W2166573023 cites W2793445666 @default.
- W2166573023 cites W36562107 @default.
- W2166573023 cites W4213332169 @default.
- W2166573023 cites W4300352878 @default.
- W2166573023 cites W4300402905 @default.
- W2166573023 cites W48611550 @default.
- W2166573023 doi "https://doi.org/10.1080/10170660809509074" @default.
- W2166573023 hasPublicationYear "2008" @default.
- W2166573023 type Work @default.
- W2166573023 sameAs 2166573023 @default.
- W2166573023 citedByCount "4" @default.
- W2166573023 countsByYear W21665730232013 @default.
- W2166573023 countsByYear W21665730232014 @default.
- W2166573023 crossrefType "journal-article" @default.
- W2166573023 hasAuthorship W2166573023A5017372589 @default.
- W2166573023 hasAuthorship W2166573023A5039535862 @default.
- W2166573023 hasConcept C111919701 @default.
- W2166573023 hasConcept C119857082 @default.
- W2166573023 hasConcept C124101348 @default.
- W2166573023 hasConcept C153180895 @default.
- W2166573023 hasConcept C154945302 @default.
- W2166573023 hasConcept C155032097 @default.
- W2166573023 hasConcept C177264268 @default.
- W2166573023 hasConcept C196985124 @default.
- W2166573023 hasConcept C199360897 @default.
- W2166573023 hasConcept C40567965 @default.
- W2166573023 hasConcept C41008148 @default.
- W2166573023 hasConcept C50644808 @default.
- W2166573023 hasConcept C98045186 @default.
- W2166573023 hasConceptScore W2166573023C111919701 @default.
- W2166573023 hasConceptScore W2166573023C119857082 @default.
- W2166573023 hasConceptScore W2166573023C124101348 @default.
- W2166573023 hasConceptScore W2166573023C153180895 @default.
- W2166573023 hasConceptScore W2166573023C154945302 @default.
- W2166573023 hasConceptScore W2166573023C155032097 @default.
- W2166573023 hasConceptScore W2166573023C177264268 @default.
- W2166573023 hasConceptScore W2166573023C196985124 @default.
- W2166573023 hasConceptScore W2166573023C199360897 @default.
- W2166573023 hasConceptScore W2166573023C40567965 @default.
- W2166573023 hasConceptScore W2166573023C41008148 @default.
- W2166573023 hasConceptScore W2166573023C50644808 @default.
- W2166573023 hasConceptScore W2166573023C98045186 @default.
- W2166573023 hasIssue "1" @default.
- W2166573023 hasLocation W21665730231 @default.
- W2166573023 hasOpenAccess W2166573023 @default.
- W2166573023 hasPrimaryLocation W21665730231 @default.
- W2166573023 hasRelatedWork W1988215207 @default.
- W2166573023 hasRelatedWork W2075600602 @default.
- W2166573023 hasRelatedWork W2102574949 @default.
- W2166573023 hasRelatedWork W2435007635 @default.
- W2166573023 hasRelatedWork W2621186532 @default.
- W2166573023 hasRelatedWork W2788487682 @default.
- W2166573023 hasRelatedWork W2893268702 @default.
- W2166573023 hasRelatedWork W3049633467 @default.
- W2166573023 hasRelatedWork W4253245960 @default.
- W2166573023 hasRelatedWork W1520270042 @default.
- W2166573023 hasVolume "25" @default.
- W2166573023 isParatext "false" @default.
- W2166573023 isRetracted "false" @default.
- W2166573023 magId "2166573023" @default.
- W2166573023 workType "article" @default.