Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166664877> ?p ?o ?g. }
- W2166664877 endingPage "2408" @default.
- W2166664877 startingPage "2395" @default.
- W2166664877 abstract "Uphill running requires more energy than level running at the same speed, largely due to the additional mechanical work of elevating the body weight. We explored the distribution of energy use among the leg muscles of guinea fowl running on the level and uphill using both organismal energy expenditure (oxygen consumption) and muscle blood flow measurements. We tested each bird under four conditions: (1) rest, (2) a moderate-speed level run at 1.5 m s(-1), (3) an incline run at 1.5 m s(-1) with a 15% gradient and (4) a fast level run at a speed eliciting the same metabolic rate as did running at a 15% gradient at 1.5 m s(-1) (2.28-2.39 m s(-1)). The organismal energy expenditure increased by 30% between the moderate-speed level run and both the fast level run and the incline run, and was matched by a proportional increase in total blood flow to the leg muscles. We found that blood flow increased significantly to nearly all the leg muscles between the moderate-speed level run and the incline run. However, the increase in flow was distributed unevenly across the leg muscles, with just three muscles being responsible for over 50% of the total increase in blood flow during uphill running. Three muscles showed significant increases in blood flow with increased incline but not with an increase in speed. Increasing the volume of active muscle may explain why in a previous study a higher maximal rate of oxygen consumption was measured during uphill running. The majority of the increase in energy expenditure between level and incline running was used in stance-phase muscles. Proximal stance-phase extensor muscles with parallel fibers and short tendons, which have been considered particularly well suited for doing positive work on the center of mass, increased their mass-specific energy use during uphill running significantly more than pinnate stance-phase muscles. This finding provides some evidence for a division of labor among muscles used for mechanical work production based on their muscle-tendon architecture. Nevertheless, 33% of the total increase in energy use (40% of the increase in stance-phase energy use) during uphill running was provided by pinnate stance-phase muscles. Swing-phase muscles also increase their energy expenditure during uphill running, although to a lesser extent than that required by running faster on the level. These results suggest that neither muscle-tendon nor musculoskeletal architecture appear to greatly restrict the ability of muscles to do work during locomotor tasks such as uphill running, and that the added energy cost of running uphill is not solely due to lifting the body center of mass." @default.
- W2166664877 created "2016-06-24" @default.
- W2166664877 creator A5010357703 @default.
- W2166664877 creator A5026876827 @default.
- W2166664877 creator A5035320118 @default.
- W2166664877 creator A5059845277 @default.
- W2166664877 date "2006-07-01" @default.
- W2166664877 modified "2023-09-26" @default.
- W2166664877 title "The cost of running uphill: linking organismal and muscle energy use in guinea fowl (<i>Numida meleagris</i>)" @default.
- W2166664877 cites W1954101473 @default.
- W2166664877 cites W1972960710 @default.
- W2166664877 cites W1978905053 @default.
- W2166664877 cites W2006814908 @default.
- W2166664877 cites W2007803710 @default.
- W2166664877 cites W2017584365 @default.
- W2166664877 cites W2023599711 @default.
- W2166664877 cites W2051495148 @default.
- W2166664877 cites W2053785038 @default.
- W2166664877 cites W205870377 @default.
- W2166664877 cites W2069922723 @default.
- W2166664877 cites W2074114766 @default.
- W2166664877 cites W2095426831 @default.
- W2166664877 cites W2096240442 @default.
- W2166664877 cites W2103849599 @default.
- W2166664877 cites W2113571537 @default.
- W2166664877 cites W2118006076 @default.
- W2166664877 cites W2120094623 @default.
- W2166664877 cites W2124810472 @default.
- W2166664877 cites W2124926804 @default.
- W2166664877 cites W2146955177 @default.
- W2166664877 cites W2147906640 @default.
- W2166664877 cites W2152964331 @default.
- W2166664877 cites W2154943950 @default.
- W2166664877 cites W2157714820 @default.
- W2166664877 cites W2158520056 @default.
- W2166664877 cites W2159194202 @default.
- W2166664877 cites W2169623939 @default.
- W2166664877 cites W2170770344 @default.
- W2166664877 cites W2180345694 @default.
- W2166664877 cites W2213501725 @default.
- W2166664877 cites W2255106804 @default.
- W2166664877 cites W2311971423 @default.
- W2166664877 cites W2314793480 @default.
- W2166664877 cites W4243407123 @default.
- W2166664877 doi "https://doi.org/10.1242/jeb.02310" @default.
- W2166664877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16788023" @default.
- W2166664877 hasPublicationYear "2006" @default.
- W2166664877 type Work @default.
- W2166664877 sameAs 2166664877 @default.
- W2166664877 citedByCount "44" @default.
- W2166664877 countsByYear W21666648772012 @default.
- W2166664877 countsByYear W21666648772013 @default.
- W2166664877 countsByYear W21666648772014 @default.
- W2166664877 countsByYear W21666648772015 @default.
- W2166664877 countsByYear W21666648772017 @default.
- W2166664877 countsByYear W21666648772018 @default.
- W2166664877 countsByYear W21666648772019 @default.
- W2166664877 countsByYear W21666648772020 @default.
- W2166664877 countsByYear W21666648772021 @default.
- W2166664877 countsByYear W21666648772022 @default.
- W2166664877 countsByYear W21666648772023 @default.
- W2166664877 crossrefType "journal-article" @default.
- W2166664877 hasAuthorship W2166664877A5010357703 @default.
- W2166664877 hasAuthorship W2166664877A5026876827 @default.
- W2166664877 hasAuthorship W2166664877A5035320118 @default.
- W2166664877 hasAuthorship W2166664877A5059845277 @default.
- W2166664877 hasBestOaLocation W21666648771 @default.
- W2166664877 hasConcept C105702510 @default.
- W2166664877 hasConcept C121332964 @default.
- W2166664877 hasConcept C126322002 @default.
- W2166664877 hasConcept C127413603 @default.
- W2166664877 hasConcept C134018914 @default.
- W2166664877 hasConcept C140793950 @default.
- W2166664877 hasConcept C158846371 @default.
- W2166664877 hasConcept C170154142 @default.
- W2166664877 hasConcept C18762648 @default.
- W2166664877 hasConcept C2909895380 @default.
- W2166664877 hasConcept C2988147884 @default.
- W2166664877 hasConcept C3019966295 @default.
- W2166664877 hasConcept C42972112 @default.
- W2166664877 hasConcept C71924100 @default.
- W2166664877 hasConcept C86803240 @default.
- W2166664877 hasConcept C97355855 @default.
- W2166664877 hasConceptScore W2166664877C105702510 @default.
- W2166664877 hasConceptScore W2166664877C121332964 @default.
- W2166664877 hasConceptScore W2166664877C126322002 @default.
- W2166664877 hasConceptScore W2166664877C127413603 @default.
- W2166664877 hasConceptScore W2166664877C134018914 @default.
- W2166664877 hasConceptScore W2166664877C140793950 @default.
- W2166664877 hasConceptScore W2166664877C158846371 @default.
- W2166664877 hasConceptScore W2166664877C170154142 @default.
- W2166664877 hasConceptScore W2166664877C18762648 @default.
- W2166664877 hasConceptScore W2166664877C2909895380 @default.
- W2166664877 hasConceptScore W2166664877C2988147884 @default.
- W2166664877 hasConceptScore W2166664877C3019966295 @default.
- W2166664877 hasConceptScore W2166664877C42972112 @default.
- W2166664877 hasConceptScore W2166664877C71924100 @default.
- W2166664877 hasConceptScore W2166664877C86803240 @default.