Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166853020> ?p ?o ?g. }
- W2166853020 abstract "In this paper, we have proposed a medical diagnosis system for predicting the severity of the cardiovascular diseases. The system is built by combining the relative advantages of fuzzy logic, neural network and genetic algorithm. The input variables that are non-discrete are fuzzified and fed as input to train the neural network. The neural network is trained using a genetic algorithm and used to identify the fuzzy rules that are significant for the purpose of classification. The rules identified by the neural network are further pruned and stored in the knowledge base. The rules in the knowledge base are used by inference and forecasting subsystem to predict the severity of the disease, for a given set of input data. Using the proposed approach, we have obtained classification accuracy of 88.35%." @default.
- W2166853020 created "2016-06-24" @default.
- W2166853020 creator A5017525339 @default.
- W2166853020 creator A5019432906 @default.
- W2166853020 creator A5031283206 @default.
- W2166853020 creator A5034283575 @default.
- W2166853020 date "2010-01-01" @default.
- W2166853020 modified "2023-09-26" @default.
- W2166853020 title "Fuzzy neuro genetic approach for predicting the risk of cardiovascular diseases" @default.
- W2166853020 cites W1497256448 @default.
- W2166853020 cites W1528140509 @default.
- W2166853020 cites W1604624123 @default.
- W2166853020 cites W1904483946 @default.
- W2166853020 cites W1945166973 @default.
- W2166853020 cites W1958498205 @default.
- W2166853020 cites W1972670377 @default.
- W2166853020 cites W1991426267 @default.
- W2166853020 cites W2011433920 @default.
- W2166853020 cites W2013143463 @default.
- W2166853020 cites W2061255812 @default.
- W2166853020 cites W2063921560 @default.
- W2166853020 cites W2069805752 @default.
- W2166853020 cites W2080805166 @default.
- W2166853020 cites W2093090592 @default.
- W2166853020 cites W2097571405 @default.
- W2166853020 cites W2103069675 @default.
- W2166853020 cites W2103414828 @default.
- W2166853020 cites W2116003303 @default.
- W2166853020 cites W2121509234 @default.
- W2166853020 cites W2128552148 @default.
- W2166853020 cites W2131824363 @default.
- W2166853020 cites W2142183404 @default.
- W2166853020 cites W2147234763 @default.
- W2166853020 cites W2152150600 @default.
- W2166853020 cites W2156746760 @default.
- W2166853020 cites W2165687409 @default.
- W2166853020 cites W2904250082 @default.
- W2166853020 cites W2912565176 @default.
- W2166853020 cites W44465109 @default.
- W2166853020 cites W638785716 @default.
- W2166853020 doi "https://doi.org/10.1504/ijdmmm.2010.035565" @default.
- W2166853020 hasPublicationYear "2010" @default.
- W2166853020 type Work @default.
- W2166853020 sameAs 2166853020 @default.
- W2166853020 citedByCount "16" @default.
- W2166853020 countsByYear W21668530202012 @default.
- W2166853020 countsByYear W21668530202013 @default.
- W2166853020 countsByYear W21668530202014 @default.
- W2166853020 countsByYear W21668530202015 @default.
- W2166853020 countsByYear W21668530202016 @default.
- W2166853020 countsByYear W21668530202017 @default.
- W2166853020 countsByYear W21668530202018 @default.
- W2166853020 countsByYear W21668530202019 @default.
- W2166853020 countsByYear W21668530202020 @default.
- W2166853020 countsByYear W21668530202021 @default.
- W2166853020 crossrefType "journal-article" @default.
- W2166853020 hasAuthorship W2166853020A5017525339 @default.
- W2166853020 hasAuthorship W2166853020A5019432906 @default.
- W2166853020 hasAuthorship W2166853020A5031283206 @default.
- W2166853020 hasAuthorship W2166853020A5034283575 @default.
- W2166853020 hasConcept C119857082 @default.
- W2166853020 hasConcept C124101348 @default.
- W2166853020 hasConcept C134306372 @default.
- W2166853020 hasConcept C154945302 @default.
- W2166853020 hasConcept C177264268 @default.
- W2166853020 hasConcept C186108316 @default.
- W2166853020 hasConcept C195975749 @default.
- W2166853020 hasConcept C199360897 @default.
- W2166853020 hasConcept C2776214188 @default.
- W2166853020 hasConcept C29470771 @default.
- W2166853020 hasConcept C2987376176 @default.
- W2166853020 hasConcept C33923547 @default.
- W2166853020 hasConcept C41008148 @default.
- W2166853020 hasConcept C42058472 @default.
- W2166853020 hasConcept C4554734 @default.
- W2166853020 hasConcept C50644808 @default.
- W2166853020 hasConcept C58166 @default.
- W2166853020 hasConcept C8880873 @default.
- W2166853020 hasConceptScore W2166853020C119857082 @default.
- W2166853020 hasConceptScore W2166853020C124101348 @default.
- W2166853020 hasConceptScore W2166853020C134306372 @default.
- W2166853020 hasConceptScore W2166853020C154945302 @default.
- W2166853020 hasConceptScore W2166853020C177264268 @default.
- W2166853020 hasConceptScore W2166853020C186108316 @default.
- W2166853020 hasConceptScore W2166853020C195975749 @default.
- W2166853020 hasConceptScore W2166853020C199360897 @default.
- W2166853020 hasConceptScore W2166853020C2776214188 @default.
- W2166853020 hasConceptScore W2166853020C29470771 @default.
- W2166853020 hasConceptScore W2166853020C2987376176 @default.
- W2166853020 hasConceptScore W2166853020C33923547 @default.
- W2166853020 hasConceptScore W2166853020C41008148 @default.
- W2166853020 hasConceptScore W2166853020C42058472 @default.
- W2166853020 hasConceptScore W2166853020C4554734 @default.
- W2166853020 hasConceptScore W2166853020C50644808 @default.
- W2166853020 hasConceptScore W2166853020C58166 @default.
- W2166853020 hasConceptScore W2166853020C8880873 @default.
- W2166853020 hasLocation W21668530201 @default.
- W2166853020 hasOpenAccess W2166853020 @default.
- W2166853020 hasPrimaryLocation W21668530201 @default.
- W2166853020 hasRelatedWork W1578766321 @default.