Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166939753> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2166939753 abstract "The generalized Gauss-Bonnet theorem of Allendoerfer- Weil [1] and Chern [2] has played an important role in the development of the relationship between modern differential geometry and algebraic topology, providing in particular one of the primary stimuli for the theory of characteristi c classes. There are now a number of proofs in the literature, from the quite sophisticated (deducing it as a special case of the Atiyah-Singer index theorem for example) to the relatively elementary and straightforward. (For a particularly elegant example of the latter see [7, Appendix C].) In general these previous proofs have a definite flavor and invoke explicit appeals to general vector bundle or principal bundle theory. In view of the above historical fact this is perhaps natural, and yet from another point of view it is somewhat anomalous. For the theorem states the equality of two quantities: Here M is any closed {— compact, without boundary), smooth (= C°°) Riemannian manifold of even dimension n = 2k, K{n) is a certain natural real valued function on M (which in local coordinates is a somewhat complicated but quite explicit rational function of the components of the metric tensor and its partial derivatives of order two or less), μ is the Riemannian measure, and χ(M) is the Euler characteristic of M. There is nothing fundamentally cohomological on either side of this identity. True, one tends to think of χ(M) as the alternating sum of the betti numbers, but equally well and more geometrically it is the self intersection number of the diagonal in M x M or equivalently the algebraic number of zeros of a generic vector field. Indeed χ(M) is perhaps the most primitive topological invariant of M beyond the number of connected components; the fact that Σ{—)knk (where nk is the number of faces of dimension k in a cellular decomposition of a polyhedron P) is a combinatorial invariant χ(P) goes back two hundred years before the development of homology theory. And on the left we are really integrating a function with respect" @default.
- W2166939753 created "2016-06-24" @default.
- W2166939753 creator A5057918239 @default.
- W2166939753 date "1978-01-01" @default.
- W2166939753 modified "2023-10-14" @default.
- W2166939753 title "A topological Gauss-Bonnet theorem" @default.
- W2166939753 cites W1949813140 @default.
- W2166939753 cites W1984383472 @default.
- W2166939753 cites W2006006427 @default.
- W2166939753 cites W2094393658 @default.
- W2166939753 cites W2130555067 @default.
- W2166939753 cites W2332445708 @default.
- W2166939753 doi "https://doi.org/10.4310/jdg/1214434606" @default.
- W2166939753 hasPublicationYear "1978" @default.
- W2166939753 type Work @default.
- W2166939753 sameAs 2166939753 @default.
- W2166939753 citedByCount "2" @default.
- W2166939753 countsByYear W21669397532016 @default.
- W2166939753 countsByYear W21669397532017 @default.
- W2166939753 crossrefType "journal-article" @default.
- W2166939753 hasAuthorship W2166939753A5057918239 @default.
- W2166939753 hasBestOaLocation W21669397531 @default.
- W2166939753 hasConcept C114614502 @default.
- W2166939753 hasConcept C121332964 @default.
- W2166939753 hasConcept C146846114 @default.
- W2166939753 hasConcept C161794534 @default.
- W2166939753 hasConcept C164862541 @default.
- W2166939753 hasConcept C184720557 @default.
- W2166939753 hasConcept C202444582 @default.
- W2166939753 hasConcept C33923547 @default.
- W2166939753 hasConcept C37914503 @default.
- W2166939753 hasConcept C62520636 @default.
- W2166939753 hasConceptScore W2166939753C114614502 @default.
- W2166939753 hasConceptScore W2166939753C121332964 @default.
- W2166939753 hasConceptScore W2166939753C146846114 @default.
- W2166939753 hasConceptScore W2166939753C161794534 @default.
- W2166939753 hasConceptScore W2166939753C164862541 @default.
- W2166939753 hasConceptScore W2166939753C184720557 @default.
- W2166939753 hasConceptScore W2166939753C202444582 @default.
- W2166939753 hasConceptScore W2166939753C33923547 @default.
- W2166939753 hasConceptScore W2166939753C37914503 @default.
- W2166939753 hasConceptScore W2166939753C62520636 @default.
- W2166939753 hasIssue "3" @default.
- W2166939753 hasLocation W21669397531 @default.
- W2166939753 hasOpenAccess W2166939753 @default.
- W2166939753 hasPrimaryLocation W21669397531 @default.
- W2166939753 hasRelatedWork W1993484871 @default.
- W2166939753 hasRelatedWork W2071383071 @default.
- W2166939753 hasRelatedWork W2078458439 @default.
- W2166939753 hasRelatedWork W2172084609 @default.
- W2166939753 hasRelatedWork W2962691135 @default.
- W2166939753 hasRelatedWork W3106133691 @default.
- W2166939753 hasRelatedWork W4239417051 @default.
- W2166939753 hasRelatedWork W4249580765 @default.
- W2166939753 hasRelatedWork W4308829634 @default.
- W2166939753 hasRelatedWork W53580132 @default.
- W2166939753 hasVolume "13" @default.
- W2166939753 isParatext "false" @default.
- W2166939753 isRetracted "false" @default.
- W2166939753 magId "2166939753" @default.
- W2166939753 workType "article" @default.