Matches in SemOpenAlex for { <https://semopenalex.org/work/W2166988816> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2166988816 endingPage "80" @default.
- W2166988816 startingPage "67" @default.
- W2166988816 abstract "Machine learning is the core of artificial intelligence. It is a fundamental way to the computer intelligence. Support vector machine is one of the important methods in the field of machine learning. It has the advantages of global optimization and strong generalization ability. It has been successfully applied to face recognition, fault diagnosis, financial forecasting and other fields. In this paper, a novel SVR model is proposed to forecast GDP. In the model, The neighborhood rough set (NRS) is used to reduce the index set and the chaotic genetic algorithm (CGA) is adopted to parameters searching in SVR model. Then the novel model NRS-CGA-SVR is established to predict GDP of Anhui province. The results show that the proposed model is better than the other models presented in this paper on forecasting GDP." @default.
- W2166988816 created "2016-06-24" @default.
- W2166988816 creator A5015704417 @default.
- W2166988816 creator A5016041048 @default.
- W2166988816 creator A5086138484 @default.
- W2166988816 date "2014-06-30" @default.
- W2166988816 modified "2023-10-10" @default.
- W2166988816 title "Application of an Optimized SVR Model of Machine Learning" @default.
- W2166988816 cites W1497256448 @default.
- W2166988816 cites W1980668403 @default.
- W2166988816 cites W1988198834 @default.
- W2166988816 cites W2033406960 @default.
- W2166988816 cites W2083931841 @default.
- W2166988816 cites W2113882979 @default.
- W2166988816 cites W2124217455 @default.
- W2166988816 cites W2158633287 @default.
- W2166988816 cites W2340020088 @default.
- W2166988816 cites W2350620148 @default.
- W2166988816 cites W2353177528 @default.
- W2166988816 cites W2354229472 @default.
- W2166988816 cites W2359284381 @default.
- W2166988816 cites W2364433552 @default.
- W2166988816 cites W2364930768 @default.
- W2166988816 cites W2365107903 @default.
- W2166988816 cites W2370608312 @default.
- W2166988816 cites W2373716334 @default.
- W2166988816 cites W2374168650 @default.
- W2166988816 cites W2506703326 @default.
- W2166988816 cites W3149962680 @default.
- W2166988816 doi "https://doi.org/10.14257/ijmue.2014.9.6.08" @default.
- W2166988816 hasPublicationYear "2014" @default.
- W2166988816 type Work @default.
- W2166988816 sameAs 2166988816 @default.
- W2166988816 citedByCount "7" @default.
- W2166988816 countsByYear W21669888162014 @default.
- W2166988816 countsByYear W21669888162016 @default.
- W2166988816 countsByYear W21669888162017 @default.
- W2166988816 countsByYear W21669888162018 @default.
- W2166988816 countsByYear W21669888162020 @default.
- W2166988816 crossrefType "journal-article" @default.
- W2166988816 hasAuthorship W2166988816A5015704417 @default.
- W2166988816 hasAuthorship W2166988816A5016041048 @default.
- W2166988816 hasAuthorship W2166988816A5086138484 @default.
- W2166988816 hasConcept C119857082 @default.
- W2166988816 hasConcept C12267149 @default.
- W2166988816 hasConcept C154945302 @default.
- W2166988816 hasConcept C41008148 @default.
- W2166988816 hasConceptScore W2166988816C119857082 @default.
- W2166988816 hasConceptScore W2166988816C12267149 @default.
- W2166988816 hasConceptScore W2166988816C154945302 @default.
- W2166988816 hasConceptScore W2166988816C41008148 @default.
- W2166988816 hasIssue "6" @default.
- W2166988816 hasLocation W21669888161 @default.
- W2166988816 hasOpenAccess W2166988816 @default.
- W2166988816 hasPrimaryLocation W21669888161 @default.
- W2166988816 hasRelatedWork W1996541855 @default.
- W2166988816 hasRelatedWork W2101819884 @default.
- W2166988816 hasRelatedWork W2803710604 @default.
- W2166988816 hasRelatedWork W2937631562 @default.
- W2166988816 hasRelatedWork W2979979539 @default.
- W2166988816 hasRelatedWork W3136979370 @default.
- W2166988816 hasRelatedWork W3194539120 @default.
- W2166988816 hasRelatedWork W3195168932 @default.
- W2166988816 hasRelatedWork W4205958290 @default.
- W2166988816 hasRelatedWork W4361795583 @default.
- W2166988816 hasVolume "9" @default.
- W2166988816 isParatext "false" @default.
- W2166988816 isRetracted "false" @default.
- W2166988816 magId "2166988816" @default.
- W2166988816 workType "article" @default.