Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167045260> ?p ?o ?g. }
- W2167045260 endingPage "17" @default.
- W2167045260 startingPage "1" @default.
- W2167045260 abstract "In full waveform inversion, an appropriate preconditioner for scaling the gradient improves the inversion results and accelerates the convergence speed. The Newton-based method uses the Hessian to scale the gradient and ensures a correctly inverted image with good convergence. However, calculating the full Hessian or approximated Hessian and obtaining their inverse matrices require extensive computation, which has remained an obstacle to the application of Newton-based methods to full waveform inversion. Many attempts have been made to reduce the computational cost of obtaining the Hessian and its inverse; among these alternatives, the pseudo-Hessian method has been widely used. The use of the pseudo-Hessian reduces the computational cost by regarding the zero-lag correlation of the impulse response as a unit matrix, but the pseudo-Hessian cannot properly scale the deep portion of a model. Therefore, we proposed a weighted pseudo-Hessian which can overcome the limitations of the conventional pseudo-Hessian. The weighted pseudo-Hessian was generated by combining a weighting matrix with the conventional pseudo-Hessian. The weighting matrix is an amplitude field and helps the pseudo-Hessian to scale the gradient properly. Therefore, the weighted pseudo-Hessian can effectively scale the gradient from the shallow part to the deep part of the model with great balance. Calculating the weighting function required minimal computation, such that the computational cost of generating the weighted pseudo-Hessian was nearly the same as the computational cost needed to calculate the conventional pseudo-Hessian. To verify the proposed algorithm, Marmousi-2 data were used for the synthetic test. The results indicate that the weighted pseudo-Hessian can effectively scale the gradient from the shallow to deep portions of a model." @default.
- W2167045260 created "2016-06-24" @default.
- W2167045260 creator A5051331380 @default.
- W2167045260 creator A5071305553 @default.
- W2167045260 creator A5076233308 @default.
- W2167045260 date "2015-12-01" @default.
- W2167045260 modified "2023-10-14" @default.
- W2167045260 title "Weighted pseudo-Hessian for frequency-domain elastic full waveform inversion" @default.
- W2167045260 cites W1530424840 @default.
- W2167045260 cites W1553084009 @default.
- W2167045260 cites W1860468083 @default.
- W2167045260 cites W1971971422 @default.
- W2167045260 cites W1985883290 @default.
- W2167045260 cites W1988868334 @default.
- W2167045260 cites W1998663407 @default.
- W2167045260 cites W2006196669 @default.
- W2167045260 cites W2009552164 @default.
- W2167045260 cites W2011404076 @default.
- W2167045260 cites W2019699602 @default.
- W2167045260 cites W2037469421 @default.
- W2167045260 cites W2057658616 @default.
- W2167045260 cites W2071042502 @default.
- W2167045260 cites W2087070363 @default.
- W2167045260 cites W2097814961 @default.
- W2167045260 cites W2100814877 @default.
- W2167045260 cites W2107347543 @default.
- W2167045260 cites W2108113382 @default.
- W2167045260 cites W2112860664 @default.
- W2167045260 cites W2125916088 @default.
- W2167045260 cites W2133564330 @default.
- W2167045260 cites W2136247928 @default.
- W2167045260 cites W2144338873 @default.
- W2167045260 cites W2144754538 @default.
- W2167045260 cites W2151901634 @default.
- W2167045260 cites W2155107551 @default.
- W2167045260 cites W2166525224 @default.
- W2167045260 cites W2167497610 @default.
- W2167045260 cites W2168110839 @default.
- W2167045260 cites W2168331961 @default.
- W2167045260 cites W2314506843 @default.
- W2167045260 doi "https://doi.org/10.1016/j.jappgeo.2015.09.014" @default.
- W2167045260 hasPublicationYear "2015" @default.
- W2167045260 type Work @default.
- W2167045260 sameAs 2167045260 @default.
- W2167045260 citedByCount "12" @default.
- W2167045260 countsByYear W21670452602016 @default.
- W2167045260 countsByYear W21670452602017 @default.
- W2167045260 countsByYear W21670452602019 @default.
- W2167045260 countsByYear W21670452602020 @default.
- W2167045260 countsByYear W21670452602021 @default.
- W2167045260 countsByYear W21670452602022 @default.
- W2167045260 countsByYear W21670452602023 @default.
- W2167045260 crossrefType "journal-article" @default.
- W2167045260 hasAuthorship W2167045260A5051331380 @default.
- W2167045260 hasAuthorship W2167045260A5071305553 @default.
- W2167045260 hasAuthorship W2167045260A5076233308 @default.
- W2167045260 hasConcept C109007969 @default.
- W2167045260 hasConcept C11413529 @default.
- W2167045260 hasConcept C114954040 @default.
- W2167045260 hasConcept C121332964 @default.
- W2167045260 hasConcept C126255220 @default.
- W2167045260 hasConcept C127313418 @default.
- W2167045260 hasConcept C134306372 @default.
- W2167045260 hasConcept C151730666 @default.
- W2167045260 hasConcept C158622935 @default.
- W2167045260 hasConcept C183115368 @default.
- W2167045260 hasConcept C1893757 @default.
- W2167045260 hasConcept C203616005 @default.
- W2167045260 hasConcept C24890656 @default.
- W2167045260 hasConcept C28826006 @default.
- W2167045260 hasConcept C33923547 @default.
- W2167045260 hasConcept C41008148 @default.
- W2167045260 hasConcept C45374587 @default.
- W2167045260 hasConcept C62520636 @default.
- W2167045260 hasConcept C64057670 @default.
- W2167045260 hasConcept C73729460 @default.
- W2167045260 hasConcept C85189116 @default.
- W2167045260 hasConcept C93779851 @default.
- W2167045260 hasConceptScore W2167045260C109007969 @default.
- W2167045260 hasConceptScore W2167045260C11413529 @default.
- W2167045260 hasConceptScore W2167045260C114954040 @default.
- W2167045260 hasConceptScore W2167045260C121332964 @default.
- W2167045260 hasConceptScore W2167045260C126255220 @default.
- W2167045260 hasConceptScore W2167045260C127313418 @default.
- W2167045260 hasConceptScore W2167045260C134306372 @default.
- W2167045260 hasConceptScore W2167045260C151730666 @default.
- W2167045260 hasConceptScore W2167045260C158622935 @default.
- W2167045260 hasConceptScore W2167045260C183115368 @default.
- W2167045260 hasConceptScore W2167045260C1893757 @default.
- W2167045260 hasConceptScore W2167045260C203616005 @default.
- W2167045260 hasConceptScore W2167045260C24890656 @default.
- W2167045260 hasConceptScore W2167045260C28826006 @default.
- W2167045260 hasConceptScore W2167045260C33923547 @default.
- W2167045260 hasConceptScore W2167045260C41008148 @default.
- W2167045260 hasConceptScore W2167045260C45374587 @default.
- W2167045260 hasConceptScore W2167045260C62520636 @default.
- W2167045260 hasConceptScore W2167045260C64057670 @default.
- W2167045260 hasConceptScore W2167045260C73729460 @default.