Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167323648> ?p ?o ?g. }
- W2167323648 endingPage "6775" @default.
- W2167323648 startingPage "6775" @default.
- W2167323648 abstract "Reactions of Fe2(CO)6(μ-pdt) (pdt = SCH2CH2CH2S) with aminodiphosphines Ph2PN(R)PPh2 (R = allyl, iPr, iBu, p-tolyl, H) have been carried out under different conditions. At room temperature in MeCN with added Me3NO·2H2O, dibasal chelate complexes Fe2(CO)4{κ2-Ph2PN(R)PPh2}(μ-pdt) are formed, while in refluxing toluene bridge isomers Fe2(CO)4{μ-Ph2PN(R)PPh2}(μ-pdt) are the major products. Separate studies have shown that chelate complexes convert to the bridge isomers at higher temperatures. Two pairs of bridge and chelate isomers (R = allyl, iPr) have been crystallographically characterised together with Fe2(CO)4{μ-Ph2PN(H)PPh2}(μ-pdt). Chelate complexes adopt the dibasal diphosphine arrangement in the solid state and exhibit very small P–Fe–P bite-angles, while the bridge complexes adopt the expected cisoid dibasal geometry. Density functional calculations have been carried out on the chelate and bridge isomers of the model compound Fe2(CO)4{Ph2PN(Me)PPh2}(μ-pdt) and reveal that the bridge isomer is thermodynamically favourable relative to the chelate isomers that are isoenergetic. The HOMO in each of the three isomers exhibits significant metal–metal bonding character, supporting a site-specific protonation of the iron–iron bond upon treatment with acid. Addition of HBF4·Et2O to the Fe2(CO)4{κ2-Ph2PN(allyl)PPh2}(μ-pdt) results in the clean formation of the corresponding dibasal hydride complex [Fe2(CO)4{κ2-Ph2PN(allyl)PPh2}(μ-H)(μ-pdt)][BF4], with spectroscopic measurements revealing the intermediate formation of a basal–apical isomer. A crystallographic study reveals that there are only very small metric changes upon protonation. In contrast, the bridge isomers react more slowly to form unstable species that cannot be isolated. Electrochemical and electrocatalysis studies have been carried out on the isomers of Fe2(CO)4{Ph2PN(allyl)PPh2}(μ-pdt). Electron accession is predicted to occur at an orbital that is anti-bonding with respect to the two metal centres based on the DFT calculations. The LUMO in the isomeric model compounds is similar in nature and is best described as an antibonding Fe–Fe interaction that contains differing amounts of aryl π* contributions from the ancillary PNP ligand. The proton reduction catalysis observed under electrochemical conditions at ca. −1.55 V is discussed as a function of the initial isomer and a mechanism that involves an initial protonation step involving the iron–iron bond. The measured CV currents were higher at this potential for the chelating complex, indicating faster turnover. Digital simulations showed that the faster rate of catalysis of the chelating complex can be traced to its greater propensity for protonation. This supports the theory that asymmetric distribution of electron density along the iron–iron bond leads to faster catalysis for models of the Fe–Fe hydrogenase active site." @default.
- W2167323648 created "2016-06-24" @default.
- W2167323648 creator A5014602516 @default.
- W2167323648 creator A5016503049 @default.
- W2167323648 creator A5036461859 @default.
- W2167323648 creator A5048279095 @default.
- W2167323648 creator A5057588475 @default.
- W2167323648 creator A5058106337 @default.
- W2167323648 creator A5073687567 @default.
- W2167323648 creator A5089645155 @default.
- W2167323648 date "2013-01-01" @default.
- W2167323648 modified "2023-09-23" @default.
- W2167323648 title "Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts" @default.
- W2167323648 cites W126298545 @default.
- W2167323648 cites W1964433007 @default.
- W2167323648 cites W1965425796 @default.
- W2167323648 cites W1973694967 @default.
- W2167323648 cites W1973789962 @default.
- W2167323648 cites W1977101738 @default.
- W2167323648 cites W1977831187 @default.
- W2167323648 cites W1978191075 @default.
- W2167323648 cites W1980063369 @default.
- W2167323648 cites W1981106738 @default.
- W2167323648 cites W1981134421 @default.
- W2167323648 cites W1983934159 @default.
- W2167323648 cites W1984778587 @default.
- W2167323648 cites W1991950488 @default.
- W2167323648 cites W1994125229 @default.
- W2167323648 cites W1995586452 @default.
- W2167323648 cites W2008666852 @default.
- W2167323648 cites W2009202316 @default.
- W2167323648 cites W2014141708 @default.
- W2167323648 cites W2015042315 @default.
- W2167323648 cites W2015618028 @default.
- W2167323648 cites W2021954807 @default.
- W2167323648 cites W2023271753 @default.
- W2167323648 cites W2023688434 @default.
- W2167323648 cites W2027365443 @default.
- W2167323648 cites W2031710171 @default.
- W2167323648 cites W2033005578 @default.
- W2167323648 cites W2033545265 @default.
- W2167323648 cites W2036475784 @default.
- W2167323648 cites W2036809572 @default.
- W2167323648 cites W2038767330 @default.
- W2167323648 cites W2041710757 @default.
- W2167323648 cites W2042368837 @default.
- W2167323648 cites W2042819121 @default.
- W2167323648 cites W2042944554 @default.
- W2167323648 cites W2043776402 @default.
- W2167323648 cites W2044265118 @default.
- W2167323648 cites W2048865367 @default.
- W2167323648 cites W2055281567 @default.
- W2167323648 cites W2055342637 @default.
- W2167323648 cites W2058977225 @default.
- W2167323648 cites W2064480343 @default.
- W2167323648 cites W2068718415 @default.
- W2167323648 cites W2076550845 @default.
- W2167323648 cites W2077845926 @default.
- W2167323648 cites W2082232668 @default.
- W2167323648 cites W2082294910 @default.
- W2167323648 cites W2089435321 @default.
- W2167323648 cites W2090504097 @default.
- W2167323648 cites W2091258026 @default.
- W2167323648 cites W2093473865 @default.
- W2167323648 cites W2093604798 @default.
- W2167323648 cites W2102464022 @default.
- W2167323648 cites W2102501346 @default.
- W2167323648 cites W2104774802 @default.
- W2167323648 cites W2105926245 @default.
- W2167323648 cites W2125669393 @default.
- W2167323648 cites W2143981217 @default.
- W2167323648 cites W2150105749 @default.
- W2167323648 cites W2151263214 @default.
- W2167323648 cites W2171222728 @default.
- W2167323648 cites W2329497798 @default.
- W2167323648 cites W2331668115 @default.
- W2167323648 cites W2334251352 @default.
- W2167323648 cites W2942909664 @default.
- W2167323648 cites W2949781292 @default.
- W2167323648 doi "https://doi.org/10.1039/c3dt50147g" @default.
- W2167323648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23503781" @default.
- W2167323648 hasPublicationYear "2013" @default.
- W2167323648 type Work @default.
- W2167323648 sameAs 2167323648 @default.
- W2167323648 citedByCount "110" @default.
- W2167323648 countsByYear W21673236482013 @default.
- W2167323648 countsByYear W21673236482014 @default.
- W2167323648 countsByYear W21673236482015 @default.
- W2167323648 countsByYear W21673236482016 @default.
- W2167323648 countsByYear W21673236482017 @default.
- W2167323648 countsByYear W21673236482018 @default.
- W2167323648 countsByYear W21673236482019 @default.
- W2167323648 countsByYear W21673236482020 @default.
- W2167323648 countsByYear W21673236482021 @default.
- W2167323648 countsByYear W21673236482022 @default.
- W2167323648 countsByYear W21673236482023 @default.
- W2167323648 crossrefType "journal-article" @default.
- W2167323648 hasAuthorship W2167323648A5014602516 @default.