Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167374516> ?p ?o ?g. }
- W2167374516 endingPage "159" @default.
- W2167374516 startingPage "149" @default.
- W2167374516 abstract "Background: Application of artificial intelligence to predict and explore potential relationship between predictors and outcome in biologic nature has been increasingly used in many clinical scenarios. The purpose of this study was to apply and validate artificial neural network (ANN) and naive Bayes classifier (NBC), two models of artificial intelligence, in predicting the target range of plasma intact parathyroid hormone (iPTH) concentration for hemodialysis patients. Methods: The study population included 130 stable hemodialysis patients. The predictors consisted of demographic characteristics (gender, age), associated diseases (diabetes, hypertension), and blood biochemistries (hemoglobin, protein, albumin, calcium, phosphorus, alkaline phosphatase, and ferritin), calcium-phosphorus product, and transferrin saturation values. Plasma iPTH concentration measured by radioimmunometric assay was the dichotomous outcome variable, either target group (150 ng/L≤iPTH≤300 ng/L) or non-target group (iPTH < 150 ng/L or iPTH > 300ng/L) on the basis of Kidney Disease Outcomes Quality Initiative guidelines. The leave-one-out cross validation was employed to surmount the generalization problem caused by a small amount of study population. To compare the performance of the ANN and NBC models, discrimination was evaluated using the area under the receiver operating characteristic curve (AUC) and calibration was estimated using the Hosmer-Lemeshow goodness-of-fit statistic (H-statistic). Results: Pairwise comparison of each AUC showed that the ANN model significantly outperformed the NBC model (AUC=0.90±0.06 vs. 0.62±0.08, P<0.01). The H-statistic values of the ANN and NBC models were 6.88 (P=0.08) and 6.97 (P=0.07), respectively. The ANN model with a lower H-statistic and a higher P value than the NBC model was associated with a better fit. Conclusion: The ANN model could serve as a promising tool to forecast the target range of plasma iPTH concentration in hemodialysis patients." @default.
- W2167374516 created "2016-06-24" @default.
- W2167374516 creator A5032167450 @default.
- W2167374516 creator A5039120266 @default.
- W2167374516 creator A5060599376 @default.
- W2167374516 creator A5064958510 @default.
- W2167374516 creator A5081630506 @default.
- W2167374516 creator A5082130243 @default.
- W2167374516 date "2006-09-01" @default.
- W2167374516 modified "2023-09-28" @default.
- W2167374516 title "Clinical Applications of Artificial Intelligence to Forecast Target Range of Radioimmunometric Intact Parathyroid Hormone in Hemodialysis Patients" @default.
- W2167374516 cites W1574011522 @default.
- W2167374516 cites W1760932166 @default.
- W2167374516 cites W1882130398 @default.
- W2167374516 cites W1950055884 @default.
- W2167374516 cites W1968210234 @default.
- W2167374516 cites W1973074473 @default.
- W2167374516 cites W1975897238 @default.
- W2167374516 cites W1977382134 @default.
- W2167374516 cites W1981066436 @default.
- W2167374516 cites W1990748933 @default.
- W2167374516 cites W1996597237 @default.
- W2167374516 cites W2007616276 @default.
- W2167374516 cites W2030346326 @default.
- W2167374516 cites W2036035235 @default.
- W2167374516 cites W2040928917 @default.
- W2167374516 cites W2052832896 @default.
- W2167374516 cites W2056023776 @default.
- W2167374516 cites W2059281426 @default.
- W2167374516 cites W2059331879 @default.
- W2167374516 cites W2071280898 @default.
- W2167374516 cites W2076042352 @default.
- W2167374516 cites W2096749972 @default.
- W2167374516 cites W2104137260 @default.
- W2167374516 cites W2105857214 @default.
- W2167374516 cites W2105981176 @default.
- W2167374516 cites W2107207648 @default.
- W2167374516 cites W2122311692 @default.
- W2167374516 cites W2139155904 @default.
- W2167374516 cites W2143524071 @default.
- W2167374516 cites W2148254543 @default.
- W2167374516 cites W2148773517 @default.
- W2167374516 cites W2151760669 @default.
- W2167374516 cites W2156847802 @default.
- W2167374516 cites W2156873016 @default.
- W2167374516 cites W2157634582 @default.
- W2167374516 cites W2157864351 @default.
- W2167374516 cites W2158641150 @default.
- W2167374516 cites W2255102639 @default.
- W2167374516 cites W2266995761 @default.
- W2167374516 cites W2407309269 @default.
- W2167374516 cites W2548549197 @default.
- W2167374516 doi "https://doi.org/10.6332/anms.1903.004" @default.
- W2167374516 hasPublicationYear "2006" @default.
- W2167374516 type Work @default.
- W2167374516 sameAs 2167374516 @default.
- W2167374516 citedByCount "0" @default.
- W2167374516 crossrefType "journal-article" @default.
- W2167374516 hasAuthorship W2167374516A5032167450 @default.
- W2167374516 hasAuthorship W2167374516A5039120266 @default.
- W2167374516 hasAuthorship W2167374516A5060599376 @default.
- W2167374516 hasAuthorship W2167374516A5064958510 @default.
- W2167374516 hasAuthorship W2167374516A5081630506 @default.
- W2167374516 hasAuthorship W2167374516A5082130243 @default.
- W2167374516 hasConcept C105795698 @default.
- W2167374516 hasConcept C126322002 @default.
- W2167374516 hasConcept C134018914 @default.
- W2167374516 hasConcept C2778063415 @default.
- W2167374516 hasConcept C2781208988 @default.
- W2167374516 hasConcept C2908647359 @default.
- W2167374516 hasConcept C33923547 @default.
- W2167374516 hasConcept C519063684 @default.
- W2167374516 hasConcept C71924100 @default.
- W2167374516 hasConcept C89128539 @default.
- W2167374516 hasConcept C99454951 @default.
- W2167374516 hasConceptScore W2167374516C105795698 @default.
- W2167374516 hasConceptScore W2167374516C126322002 @default.
- W2167374516 hasConceptScore W2167374516C134018914 @default.
- W2167374516 hasConceptScore W2167374516C2778063415 @default.
- W2167374516 hasConceptScore W2167374516C2781208988 @default.
- W2167374516 hasConceptScore W2167374516C2908647359 @default.
- W2167374516 hasConceptScore W2167374516C33923547 @default.
- W2167374516 hasConceptScore W2167374516C519063684 @default.
- W2167374516 hasConceptScore W2167374516C71924100 @default.
- W2167374516 hasConceptScore W2167374516C89128539 @default.
- W2167374516 hasConceptScore W2167374516C99454951 @default.
- W2167374516 hasIssue "3" @default.
- W2167374516 hasLocation W21673745161 @default.
- W2167374516 hasOpenAccess W2167374516 @default.
- W2167374516 hasPrimaryLocation W21673745161 @default.
- W2167374516 hasRelatedWork W1565276355 @default.
- W2167374516 hasRelatedWork W1907504177 @default.
- W2167374516 hasRelatedWork W1970964184 @default.
- W2167374516 hasRelatedWork W1999517354 @default.
- W2167374516 hasRelatedWork W1999591693 @default.
- W2167374516 hasRelatedWork W2032610926 @default.
- W2167374516 hasRelatedWork W2040697088 @default.
- W2167374516 hasRelatedWork W2049495897 @default.