Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167396544> ?p ?o ?g. }
- W2167396544 abstract "The objective of this thesis is to develop probabilistic graphical models for analyzing human interaction in meetings based on multimodel cues. We use meeting as a study case of human interactions since research shows that high complexity information is mostly exchanged through face-to-face interactions. Modeling human interaction provides several challenging research issues for the machine learning community. In meetings, each participant is a multimodal data stream. Modeling human interaction involves simultaneous recording and analysis of multiple multimodal streams. These streams may be asynchronous, have different frame rates, exhibit different stationarity properties, and carry complementary (or correlated) information. In this thesis, we developed three probabilistic graphical models for human interaction analysis. The proposed models use the ``probabilistic graphical model'' formalism, a formalism that exploits the conjoined capabilities of graph theory and probability theory to build complex models out of simpler pieces. We first introduce the multi-layer framework, in which the first layer models typical individual activity from low-level audio-visual features, and the second layer models the interactions. The two layers are linked by a set of posterior probability-based features. Next, we describe the team-player influence model, which learns the influence of interacting Markov chains within a team. The team-player influence model has a two-level structure: individual-level and group-level. Individual level models actions of each player, and the group-level models actions of the team as a whole. The influence of each player on the team is jointly learned with the rest of the model parameters in a principled manner using the Expectation-Maximization (EM) algorithm. Finally, we describe the semi-supervised adapted HMMs for unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted Hidden Markov Model (HMM) framework, in which usual event models are first learned from a large amount of (commonly available) training data, while unusual event models are learned by Bayesian adaptation in an unsupervised manner." @default.
- W2167396544 created "2016-06-24" @default.
- W2167396544 creator A5030446424 @default.
- W2167396544 date "2006-01-01" @default.
- W2167396544 modified "2023-09-27" @default.
- W2167396544 title "Probabilistic Graphical Models for Human Interaction Analysis" @default.
- W2167396544 cites W140329658 @default.
- W2167396544 cites W141406515 @default.
- W2167396544 cites W1480379559 @default.
- W2167396544 cites W1486632395 @default.
- W2167396544 cites W1490699131 @default.
- W2167396544 cites W1493595169 @default.
- W2167396544 cites W1494628589 @default.
- W2167396544 cites W1510793943 @default.
- W2167396544 cites W1527739638 @default.
- W2167396544 cites W1528056001 @default.
- W2167396544 cites W1534730506 @default.
- W2167396544 cites W1537659559 @default.
- W2167396544 cites W1554827512 @default.
- W2167396544 cites W1555217905 @default.
- W2167396544 cites W1560013842 @default.
- W2167396544 cites W1572849274 @default.
- W2167396544 cites W1586505959 @default.
- W2167396544 cites W1591300715 @default.
- W2167396544 cites W1595148379 @default.
- W2167396544 cites W1595187495 @default.
- W2167396544 cites W1602662578 @default.
- W2167396544 cites W1618600317 @default.
- W2167396544 cites W1636244751 @default.
- W2167396544 cites W1732623802 @default.
- W2167396544 cites W1746680969 @default.
- W2167396544 cites W1786221213 @default.
- W2167396544 cites W1813659000 @default.
- W2167396544 cites W1868777221 @default.
- W2167396544 cites W187535091 @default.
- W2167396544 cites W1910567995 @default.
- W2167396544 cites W192493 @default.
- W2167396544 cites W1964725106 @default.
- W2167396544 cites W1964965102 @default.
- W2167396544 cites W1975273460 @default.
- W2167396544 cites W1978133464 @default.
- W2167396544 cites W198212340 @default.
- W2167396544 cites W1984746632 @default.
- W2167396544 cites W1991133427 @default.
- W2167396544 cites W1994458317 @default.
- W2167396544 cites W2019749825 @default.
- W2167396544 cites W2032558547 @default.
- W2167396544 cites W2034997783 @default.
- W2167396544 cites W2035090801 @default.
- W2167396544 cites W2036073303 @default.
- W2167396544 cites W2037591004 @default.
- W2167396544 cites W2038205869 @default.
- W2167396544 cites W2041823554 @default.
- W2167396544 cites W2048669457 @default.
- W2167396544 cites W2049633694 @default.
- W2167396544 cites W2051091181 @default.
- W2167396544 cites W2053154970 @default.
- W2167396544 cites W2053569739 @default.
- W2167396544 cites W2056818712 @default.
- W2167396544 cites W2087985697 @default.
- W2167396544 cites W2095640719 @default.
- W2167396544 cites W2095844239 @default.
- W2167396544 cites W2096071754 @default.
- W2167396544 cites W2097350683 @default.
- W2167396544 cites W2097430971 @default.
- W2167396544 cites W2098067140 @default.
- W2167396544 cites W2099919278 @default.
- W2167396544 cites W2100146099 @default.
- W2167396544 cites W2100969003 @default.
- W2167396544 cites W2102716594 @default.
- W2167396544 cites W2104191409 @default.
- W2167396544 cites W2110575115 @default.
- W2167396544 cites W2111859353 @default.
- W2167396544 cites W2111918405 @default.
- W2167396544 cites W2112623849 @default.
- W2167396544 cites W2113850638 @default.
- W2167396544 cites W2115213191 @default.
- W2167396544 cites W2115501357 @default.
- W2167396544 cites W2118368513 @default.
- W2167396544 cites W2120478181 @default.
- W2167396544 cites W2120804163 @default.
- W2167396544 cites W2121486117 @default.
- W2167396544 cites W2121604310 @default.
- W2167396544 cites W2121899951 @default.
- W2167396544 cites W2122678358 @default.
- W2167396544 cites W2124658620 @default.
- W2167396544 cites W2125838338 @default.
- W2167396544 cites W2128992202 @default.
- W2167396544 cites W2129230821 @default.
- W2167396544 cites W2129895578 @default.
- W2167396544 cites W2130416410 @default.
- W2167396544 cites W2130416704 @default.
- W2167396544 cites W2131079757 @default.
- W2167396544 cites W2131519311 @default.
- W2167396544 cites W2133457618 @default.
- W2167396544 cites W2134282114 @default.
- W2167396544 cites W2134731454 @default.
- W2167396544 cites W2134926498 @default.
- W2167396544 cites W2135024229 @default.
- W2167396544 cites W2136091964 @default.