Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167520009> ?p ?o ?g. }
- W2167520009 endingPage "183" @default.
- W2167520009 startingPage "143" @default.
- W2167520009 abstract "Abstract We investigate and quantify stirring due to chaotic advection within a steady, three-dimensional, Ekman-driven, rotating cylinder flow. The flow field has vertical overturning and horizontal swirling motion, and is an idealization of motion observed in some ocean eddies. The flow is characterized by strong background rotation, and we explore variations in Ekman and Rossby numbers, $E$ and ${R}_{o} $ , over ranges appropriate for the ocean mesoscale and submesoscale. A high-resolution spectral element model is used in conjunction with linear analytical theory, weakly nonlinear resonance analysis and a kinematic model in order to map out the barriers, manifolds, resonance layers and other objects that provide a template for chaotic stirring. As expected, chaos arises when a radially symmetric background state is perturbed by a symmetry-breaking disturbance. In the background state, each trajectory lives on a torus and some of the latter survive the perturbation and act as barriers to chaotic transport, a result consistent with an extension of the KAM theorem for three-dimensional, volume-preserving flow. For shallow eddies, where $E$ is $O(1)$ , the flow is dominated by thin resonant layers sandwiched between KAM-type barriers, and the stirring rate is weak. On the other hand, eddies with moderately small $E$ experience thicker resonant layers, wider-spread chaos and much more rapid stirring. This trend reverses for sufficiently small $E$ , corresponding to deep eddies, where the vertical rigidity imposed by strong rotation limits the stirring. The bulk stirring rate, estimated from a passive tracer release, confirms the non-monotonic variation in stirring rate with $E$ . This result is shown to be consistent with linear Ekman layer theory in conjunction with a resonant width calculation and the Taylor–Proudman theorem. The theory is able to roughly predict the value of $E$ at which stirring is maximum. For large disturbances, the stirring rate becomes monotonic over the range of Ekman numbers explored. We also explore variation in the eddy aspect ratio." @default.
- W2167520009 created "2016-06-24" @default.
- W2167520009 creator A5001928839 @default.
- W2167520009 creator A5008883456 @default.
- W2167520009 creator A5015951381 @default.
- W2167520009 creator A5032671359 @default.
- W2167520009 creator A5047221056 @default.
- W2167520009 creator A5050345679 @default.
- W2167520009 date "2013-12-05" @default.
- W2167520009 modified "2023-09-26" @default.
- W2167520009 title "Chaotic advection in a steady, three-dimensional, Ekman-driven eddy" @default.
- W2167520009 cites W1970985432 @default.
- W2167520009 cites W1973849829 @default.
- W2167520009 cites W1974038312 @default.
- W2167520009 cites W1982638983 @default.
- W2167520009 cites W1984334096 @default.
- W2167520009 cites W1985552210 @default.
- W2167520009 cites W1989475585 @default.
- W2167520009 cites W1990572569 @default.
- W2167520009 cites W1992842322 @default.
- W2167520009 cites W1994274343 @default.
- W2167520009 cites W1997260956 @default.
- W2167520009 cites W1997368774 @default.
- W2167520009 cites W1998778871 @default.
- W2167520009 cites W2000496270 @default.
- W2167520009 cites W2000529584 @default.
- W2167520009 cites W2003622604 @default.
- W2167520009 cites W2008089726 @default.
- W2167520009 cites W2008783924 @default.
- W2167520009 cites W2010141681 @default.
- W2167520009 cites W2013686371 @default.
- W2167520009 cites W2014061803 @default.
- W2167520009 cites W2014682911 @default.
- W2167520009 cites W2016500539 @default.
- W2167520009 cites W2020585322 @default.
- W2167520009 cites W2020602220 @default.
- W2167520009 cites W2027009120 @default.
- W2167520009 cites W2030006440 @default.
- W2167520009 cites W2035622430 @default.
- W2167520009 cites W2036502594 @default.
- W2167520009 cites W2043092880 @default.
- W2167520009 cites W2044241224 @default.
- W2167520009 cites W2044273153 @default.
- W2167520009 cites W2047352485 @default.
- W2167520009 cites W2048047144 @default.
- W2167520009 cites W2048995400 @default.
- W2167520009 cites W2058979845 @default.
- W2167520009 cites W2060119494 @default.
- W2167520009 cites W2062990352 @default.
- W2167520009 cites W2071874398 @default.
- W2167520009 cites W2074224167 @default.
- W2167520009 cites W2074696317 @default.
- W2167520009 cites W2076327952 @default.
- W2167520009 cites W2080035937 @default.
- W2167520009 cites W2081611029 @default.
- W2167520009 cites W2083439355 @default.
- W2167520009 cites W2083524788 @default.
- W2167520009 cites W2085271015 @default.
- W2167520009 cites W2089098090 @default.
- W2167520009 cites W2093609281 @default.
- W2167520009 cites W2094996633 @default.
- W2167520009 cites W2099177919 @default.
- W2167520009 cites W2103036899 @default.
- W2167520009 cites W2103218341 @default.
- W2167520009 cites W2103475907 @default.
- W2167520009 cites W2104444967 @default.
- W2167520009 cites W2113040626 @default.
- W2167520009 cites W2121802579 @default.
- W2167520009 cites W2127939561 @default.
- W2167520009 cites W2138212611 @default.
- W2167520009 cites W2139806732 @default.
- W2167520009 cites W2140602591 @default.
- W2167520009 cites W2150777150 @default.
- W2167520009 cites W2151361243 @default.
- W2167520009 cites W2159180760 @default.
- W2167520009 cites W2160163816 @default.
- W2167520009 cites W2164064777 @default.
- W2167520009 cites W2164112264 @default.
- W2167520009 cites W2164604081 @default.
- W2167520009 cites W2164714906 @default.
- W2167520009 cites W2172267135 @default.
- W2167520009 cites W2174946889 @default.
- W2167520009 cites W2176191286 @default.
- W2167520009 cites W2176920909 @default.
- W2167520009 cites W3098459296 @default.
- W2167520009 cites W4230237964 @default.
- W2167520009 cites W4244106998 @default.
- W2167520009 doi "https://doi.org/10.1017/jfm.2013.583" @default.
- W2167520009 hasPublicationYear "2013" @default.
- W2167520009 type Work @default.
- W2167520009 sameAs 2167520009 @default.
- W2167520009 citedByCount "21" @default.
- W2167520009 countsByYear W21675200092014 @default.
- W2167520009 countsByYear W21675200092015 @default.
- W2167520009 countsByYear W21675200092016 @default.
- W2167520009 countsByYear W21675200092017 @default.
- W2167520009 countsByYear W21675200092018 @default.
- W2167520009 countsByYear W21675200092019 @default.