Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167675918> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2167675918 abstract "Many studies are affected by missing data, which takes different forms and complicates subsequent analyses for researchers. Here, we are concerned with missing outcomes generated by a missingness mechanism that is informative. In this case, ad hoc approaches, such as complete-case analysis, are not suitable as they lead to bias and loss of precision [1]. If we wish to adequately model this type of missing data, we need to use ‘statistically principled’ methods which combine information in the observed data with assumptions about the missing value mechanism, and account for the uncertainty introduced by the missing data. These methods include Bayesian full probability modelling, in which a joint model consisting of a model of interest and a model for the missing data mechanism is specified, allowing realistic assumptions to be made about the missingness process, and sensitivity to these assumptions to be tested. Using simulated data, we demonstrate the well known deficiencies of complete-case analysis when the response has missing values which are missing not at random [2], and explore the circumstances and the extent to which Bayesian methods can improve our parameter estimates. We find that the addition of a model of missingness to form a joint model generally improves the overall fit of the model of interest leading to better prediction, but the estimates of individual parameters can be adversely affected by skewness in the response variable. With real datasets, when the form of the missingness is unknown, we would like to have a diagnostic that indicates the amount of informativeness in the missing data given our assumptions about the model of interest and the form of the missing data mechanism. pD is a measure of the dimensionality of a Bayesian model [3], and we explore the use of the scaled pD of the model of missingness in this context. We find that it is useful for indicating how far our missing data departs from missing at random, but that it should not be used for choosing the ‘best’ model. These points are illustrated with simulated data and for real examples of longitudinal data taken from the British birth cohort studies and a clinical trial analysed by Diggle and Kenward [4]." @default.
- W2167675918 created "2016-06-24" @default.
- W2167675918 creator A5039269680 @default.
- W2167675918 creator A5050647069 @default.
- W2167675918 creator A5056278561 @default.
- W2167675918 creator A5086827100 @default.
- W2167675918 date "2010-01-01" @default.
- W2167675918 modified "2023-09-26" @default.
- W2167675918 title "Insights into the use of Bayesian models for informative missing data" @default.
- W2167675918 cites W10119467 @default.
- W2167675918 cites W1132025050 @default.
- W2167675918 cites W129305155 @default.
- W2167675918 cites W1517555081 @default.
- W2167675918 cites W1520782008 @default.
- W2167675918 cites W1550443206 @default.
- W2167675918 cites W1582614941 @default.
- W2167675918 cites W1941761140 @default.
- W2167675918 cites W1977258390 @default.
- W2167675918 cites W2001050658 @default.
- W2167675918 cites W2015558203 @default.
- W2167675918 cites W2044758663 @default.
- W2167675918 cites W2044814316 @default.
- W2167675918 cites W2045656233 @default.
- W2167675918 cites W2048994468 @default.
- W2167675918 cites W2049552036 @default.
- W2167675918 cites W2057765075 @default.
- W2167675918 cites W2093223772 @default.
- W2167675918 cites W2100358124 @default.
- W2167675918 cites W2130416410 @default.
- W2167675918 cites W2139406961 @default.
- W2167675918 cites W2153930885 @default.
- W2167675918 cites W2153939609 @default.
- W2167675918 cites W2156267802 @default.
- W2167675918 cites W2284967628 @default.
- W2167675918 cites W87072980 @default.
- W2167675918 cites W972118569 @default.
- W2167675918 hasPublicationYear "2010" @default.
- W2167675918 type Work @default.
- W2167675918 sameAs 2167675918 @default.
- W2167675918 citedByCount "1" @default.
- W2167675918 countsByYear W21676759182013 @default.
- W2167675918 crossrefType "journal-article" @default.
- W2167675918 hasAuthorship W2167675918A5039269680 @default.
- W2167675918 hasAuthorship W2167675918A5050647069 @default.
- W2167675918 hasAuthorship W2167675918A5056278561 @default.
- W2167675918 hasAuthorship W2167675918A5086827100 @default.
- W2167675918 hasConcept C105795698 @default.
- W2167675918 hasConcept C107673813 @default.
- W2167675918 hasConcept C119857082 @default.
- W2167675918 hasConcept C124101348 @default.
- W2167675918 hasConcept C149782125 @default.
- W2167675918 hasConcept C154945302 @default.
- W2167675918 hasConcept C33923547 @default.
- W2167675918 hasConcept C41008148 @default.
- W2167675918 hasConcept C9357733 @default.
- W2167675918 hasConceptScore W2167675918C105795698 @default.
- W2167675918 hasConceptScore W2167675918C107673813 @default.
- W2167675918 hasConceptScore W2167675918C119857082 @default.
- W2167675918 hasConceptScore W2167675918C124101348 @default.
- W2167675918 hasConceptScore W2167675918C149782125 @default.
- W2167675918 hasConceptScore W2167675918C154945302 @default.
- W2167675918 hasConceptScore W2167675918C33923547 @default.
- W2167675918 hasConceptScore W2167675918C41008148 @default.
- W2167675918 hasConceptScore W2167675918C9357733 @default.
- W2167675918 hasLocation W21676759181 @default.
- W2167675918 hasOpenAccess W2167675918 @default.
- W2167675918 hasPrimaryLocation W21676759181 @default.
- W2167675918 hasRelatedWork W1588165559 @default.
- W2167675918 hasRelatedWork W1984683132 @default.
- W2167675918 hasRelatedWork W2047802799 @default.
- W2167675918 hasRelatedWork W2058128280 @default.
- W2167675918 hasRelatedWork W2081049826 @default.
- W2167675918 hasRelatedWork W2100358124 @default.
- W2167675918 hasRelatedWork W2735500398 @default.
- W2167675918 hasRelatedWork W2766180957 @default.
- W2167675918 hasRelatedWork W2768893842 @default.
- W2167675918 hasRelatedWork W2889085800 @default.
- W2167675918 hasRelatedWork W2916442498 @default.
- W2167675918 hasRelatedWork W2922315794 @default.
- W2167675918 hasRelatedWork W2938677524 @default.
- W2167675918 hasRelatedWork W2953331588 @default.
- W2167675918 hasRelatedWork W3024870410 @default.
- W2167675918 hasRelatedWork W3041830493 @default.
- W2167675918 hasRelatedWork W3080734880 @default.
- W2167675918 hasRelatedWork W3119788092 @default.
- W2167675918 hasRelatedWork W3126082273 @default.
- W2167675918 hasRelatedWork W3197494818 @default.
- W2167675918 isParatext "false" @default.
- W2167675918 isRetracted "false" @default.
- W2167675918 magId "2167675918" @default.
- W2167675918 workType "article" @default.