Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167691065> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2167691065 endingPage "570" @default.
- W2167691065 startingPage "557" @default.
- W2167691065 abstract "Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors and replace the second level PHT with a neural network. Two neural networks are considered: a learning vector quantisation network and a backpropagation network. We demonstrate that a neural predictor can achieve misprediction rates comparable to conventional two-level adaptive predictors and suggest that neural predictors merit further investigation." @default.
- W2167691065 created "2016-06-24" @default.
- W2167691065 creator A5007265564 @default.
- W2167691065 creator A5009984480 @default.
- W2167691065 creator A5028058028 @default.
- W2167691065 creator A5030532277 @default.
- W2167691065 creator A5033864373 @default.
- W2167691065 creator A5037430029 @default.
- W2167691065 date "2003-12-01" @default.
- W2167691065 modified "2023-10-17" @default.
- W2167691065 title "Two-level branch prediction using neural networks" @default.
- W2167691065 cites W1498897948 @default.
- W2167691065 cites W1969012464 @default.
- W2167691065 cites W2028624242 @default.
- W2167691065 cites W2065886881 @default.
- W2167691065 cites W2068713803 @default.
- W2167691065 cites W2120165344 @default.
- W2167691065 cites W2129445095 @default.
- W2167691065 cites W2130836267 @default.
- W2167691065 cites W2137066364 @default.
- W2167691065 cites W2138351227 @default.
- W2167691065 cites W2144764850 @default.
- W2167691065 cites W2146151266 @default.
- W2167691065 cites W2149172130 @default.
- W2167691065 cites W2154571389 @default.
- W2167691065 cites W2156484396 @default.
- W2167691065 cites W2165256391 @default.
- W2167691065 cites W2988776305 @default.
- W2167691065 cites W3156575316 @default.
- W2167691065 cites W4236757607 @default.
- W2167691065 cites W4237371335 @default.
- W2167691065 cites W4245672415 @default.
- W2167691065 cites W4245754602 @default.
- W2167691065 cites W4246829226 @default.
- W2167691065 doi "https://doi.org/10.1016/s1383-7621(03)00095-x" @default.
- W2167691065 hasPublicationYear "2003" @default.
- W2167691065 type Work @default.
- W2167691065 sameAs 2167691065 @default.
- W2167691065 citedByCount "23" @default.
- W2167691065 countsByYear W21676910652015 @default.
- W2167691065 countsByYear W21676910652016 @default.
- W2167691065 countsByYear W21676910652017 @default.
- W2167691065 countsByYear W21676910652018 @default.
- W2167691065 countsByYear W21676910652019 @default.
- W2167691065 countsByYear W21676910652020 @default.
- W2167691065 countsByYear W21676910652021 @default.
- W2167691065 crossrefType "journal-article" @default.
- W2167691065 hasAuthorship W2167691065A5007265564 @default.
- W2167691065 hasAuthorship W2167691065A5009984480 @default.
- W2167691065 hasAuthorship W2167691065A5028058028 @default.
- W2167691065 hasAuthorship W2167691065A5030532277 @default.
- W2167691065 hasAuthorship W2167691065A5033864373 @default.
- W2167691065 hasAuthorship W2167691065A5037430029 @default.
- W2167691065 hasConcept C119857082 @default.
- W2167691065 hasConcept C154945302 @default.
- W2167691065 hasConcept C155032097 @default.
- W2167691065 hasConcept C168522837 @default.
- W2167691065 hasConcept C173608175 @default.
- W2167691065 hasConcept C175202392 @default.
- W2167691065 hasConcept C177973122 @default.
- W2167691065 hasConcept C41008148 @default.
- W2167691065 hasConcept C50644808 @default.
- W2167691065 hasConceptScore W2167691065C119857082 @default.
- W2167691065 hasConceptScore W2167691065C154945302 @default.
- W2167691065 hasConceptScore W2167691065C155032097 @default.
- W2167691065 hasConceptScore W2167691065C168522837 @default.
- W2167691065 hasConceptScore W2167691065C173608175 @default.
- W2167691065 hasConceptScore W2167691065C175202392 @default.
- W2167691065 hasConceptScore W2167691065C177973122 @default.
- W2167691065 hasConceptScore W2167691065C41008148 @default.
- W2167691065 hasConceptScore W2167691065C50644808 @default.
- W2167691065 hasIssue "12-15" @default.
- W2167691065 hasLocation W21676910651 @default.
- W2167691065 hasOpenAccess W2167691065 @default.
- W2167691065 hasPrimaryLocation W21676910651 @default.
- W2167691065 hasRelatedWork W1559431355 @default.
- W2167691065 hasRelatedWork W2104698839 @default.
- W2167691065 hasRelatedWork W2131836320 @default.
- W2167691065 hasRelatedWork W2157746493 @default.
- W2167691065 hasRelatedWork W2167691065 @default.
- W2167691065 hasRelatedWork W2168037897 @default.
- W2167691065 hasRelatedWork W2746080558 @default.
- W2167691065 hasRelatedWork W3048788076 @default.
- W2167691065 hasRelatedWork W4313193463 @default.
- W2167691065 hasRelatedWork W2182757990 @default.
- W2167691065 hasVolume "49" @default.
- W2167691065 isParatext "false" @default.
- W2167691065 isRetracted "false" @default.
- W2167691065 magId "2167691065" @default.
- W2167691065 workType "article" @default.