Matches in SemOpenAlex for { <https://semopenalex.org/work/W2167702473> ?p ?o ?g. }
- W2167702473 endingPage "e1001886" @default.
- W2167702473 startingPage "e1001886" @default.
- W2167702473 abstract "A fundamental part of medical research is the development and validation of diagnostic and prognostic prediction models [1,2]. These prediction models aim to predict the absolute probability that a certain disease or condition is currently present (diagnostic models) or that an outcome will occur within a specific follow-up period (prognostic models) for an individual subject.Prediction models typically rely on multiple predictors, which can include demographic characteristics, medical history and physical examination items, or more complex measurements from, for example, medical imaging, electrophysiology, pathology, and biomarkers. Also for diagnostic models, estimates of probabilities are rarely based on a single test, and doctors naturally integrate several patient characteristics and symptoms [3]. A broad range of prediction modeling techniques exist, like regression approaches, neural network models, decision tree models, genetic programming models, and support vector machine learning models, although prediction models developed by a multivariable regression approach are by far prevailing.It is widely recommended that a developed prediction model should not be used in practice before being externally validated—at least once—in other individuals than those used for model development [4–7]. Unfortunately, most prediction models are poorly or not at all validated, rendering interpretation of their generalizability difficult. In addition, many systematic reviews showed that for the same outcome or same target population, numerous competing models exist [8–10]. Generally speaking, researchers often ignore existing prediction models and develop yet another prediction model from their own data [2]. This practice sustains a cycle of underpowered prediction model development studies and poor knowledge about the generalizability and applicability of developed prediction models. Evidence synthesis and meta-analysis of individual participant data (IPD) from multiple studies seems to be a unique opportunity to address these problems, as it allows researchers to develop and directly validate models on large datasets and across a wide range of populations and settings, to directly test a model’s generalizability (Fig 1) [11–13].Fig 1Trends in publications of IPD-MA studies focusing on the development and/or validation of diagnostic or prognostic prediction models.There is currently little guidance on how to conduct an IPD meta-analysis (IPD-MA) for developing and/or validating diagnostic or prognostic prediction models [15]. To date, most IPD-MA articles focus on estimating relative quantities, like a risk ratio, hazard ratio, or odds ratio for a specific treatment or a specific etiologic factor. In contrast, prediction modeling research is focused on developing and validating multivariable models aimed at calculating an absolute risk estimate of the combined variables, rather than estimating the relative effect of a specific treatment or etiologic factor. Furthermore, prediction modeling studies focus entirely on the role and joint contribution of multiple covariates, whereas intervention studies in principle rely on randomization to reduce the role of covariates (Table 1). Hence, IPD-MAs of randomized intervention and etiological studies, which are beyond the scope of this paper and are instead addressed in the accompanying paper [16], differ from IPD-MAs of multivariable prediction models, which are the focus of this paper.Table 1The main differences between IPD-MA of treatment intervention studies and of multivariable prediction modeling studies.We provide an overview of the advantages and limitations of IPD-MAs aiming to develop a novel prediction model or to validate one or more existing models across multiple datasets. This overview is based on published guidelines and existing recommendations for the conduct of prediction modeling studies and of IPD-MA research. We illustrate this overview with examples of recently published IPD-MAs of prediction models across various medical domains. Our aim is to help researchers, readers, reviewers, and editors to identify and understand the key issues involved with such IPD-MA projects." @default.
- W2167702473 created "2016-06-24" @default.
- W2167702473 creator A5002390430 @default.
- W2167702473 creator A5007039126 @default.
- W2167702473 creator A5040942978 @default.
- W2167702473 creator A5053996737 @default.
- W2167702473 creator A5058177319 @default.
- W2167702473 date "2015-10-13" @default.
- W2167702473 modified "2023-10-03" @default.
- W2167702473 title "Individual Participant Data (IPD) Meta-analyses of Diagnostic and Prognostic Modeling Studies: Guidance on Their Use" @default.
- W2167702473 cites W1810100348 @default.
- W2167702473 cites W1868522740 @default.
- W2167702473 cites W1923600032 @default.
- W2167702473 cites W1957946432 @default.
- W2167702473 cites W1990005059 @default.
- W2167702473 cites W1994224528 @default.
- W2167702473 cites W1994682257 @default.
- W2167702473 cites W1997192661 @default.
- W2167702473 cites W2019982728 @default.
- W2167702473 cites W2037747002 @default.
- W2167702473 cites W2041412209 @default.
- W2167702473 cites W2043763793 @default.
- W2167702473 cites W2050118439 @default.
- W2167702473 cites W2060950514 @default.
- W2167702473 cites W2066590112 @default.
- W2167702473 cites W2077663753 @default.
- W2167702473 cites W2078271269 @default.
- W2167702473 cites W2082376914 @default.
- W2167702473 cites W2086075933 @default.
- W2167702473 cites W2086274453 @default.
- W2167702473 cites W2087410420 @default.
- W2167702473 cites W2096991988 @default.
- W2167702473 cites W2100328957 @default.
- W2167702473 cites W2102171609 @default.
- W2167702473 cites W2109642736 @default.
- W2167702473 cites W2111319065 @default.
- W2167702473 cites W2113444602 @default.
- W2167702473 cites W2113713760 @default.
- W2167702473 cites W2114439920 @default.
- W2167702473 cites W2129328114 @default.
- W2167702473 cites W2134833483 @default.
- W2167702473 cites W2136085913 @default.
- W2167702473 cites W2151056789 @default.
- W2167702473 cites W2151684674 @default.
- W2167702473 cites W2152096996 @default.
- W2167702473 cites W2156831284 @default.
- W2167702473 cites W2157043395 @default.
- W2167702473 cites W2157222017 @default.
- W2167702473 cites W2161407352 @default.
- W2167702473 cites W2162491525 @default.
- W2167702473 cites W2172206840 @default.
- W2167702473 doi "https://doi.org/10.1371/journal.pmed.1001886" @default.
- W2167702473 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4603958" @default.
- W2167702473 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26461078" @default.
- W2167702473 hasPublicationYear "2015" @default.
- W2167702473 type Work @default.
- W2167702473 sameAs 2167702473 @default.
- W2167702473 citedByCount "89" @default.
- W2167702473 countsByYear W21677024732016 @default.
- W2167702473 countsByYear W21677024732017 @default.
- W2167702473 countsByYear W21677024732018 @default.
- W2167702473 countsByYear W21677024732019 @default.
- W2167702473 countsByYear W21677024732020 @default.
- W2167702473 countsByYear W21677024732021 @default.
- W2167702473 countsByYear W21677024732022 @default.
- W2167702473 countsByYear W21677024732023 @default.
- W2167702473 crossrefType "journal-article" @default.
- W2167702473 hasAuthorship W2167702473A5002390430 @default.
- W2167702473 hasAuthorship W2167702473A5007039126 @default.
- W2167702473 hasAuthorship W2167702473A5040942978 @default.
- W2167702473 hasAuthorship W2167702473A5053996737 @default.
- W2167702473 hasAuthorship W2167702473A5058177319 @default.
- W2167702473 hasBestOaLocation W21677024731 @default.
- W2167702473 hasConcept C126322002 @default.
- W2167702473 hasConcept C177713679 @default.
- W2167702473 hasConcept C19527891 @default.
- W2167702473 hasConcept C2779473830 @default.
- W2167702473 hasConcept C55493867 @default.
- W2167702473 hasConcept C71924100 @default.
- W2167702473 hasConcept C86803240 @default.
- W2167702473 hasConcept C95190672 @default.
- W2167702473 hasConceptScore W2167702473C126322002 @default.
- W2167702473 hasConceptScore W2167702473C177713679 @default.
- W2167702473 hasConceptScore W2167702473C19527891 @default.
- W2167702473 hasConceptScore W2167702473C2779473830 @default.
- W2167702473 hasConceptScore W2167702473C55493867 @default.
- W2167702473 hasConceptScore W2167702473C71924100 @default.
- W2167702473 hasConceptScore W2167702473C86803240 @default.
- W2167702473 hasConceptScore W2167702473C95190672 @default.
- W2167702473 hasIssue "10" @default.
- W2167702473 hasLocation W21677024731 @default.
- W2167702473 hasLocation W21677024732 @default.
- W2167702473 hasLocation W21677024733 @default.
- W2167702473 hasLocation W21677024734 @default.
- W2167702473 hasLocation W21677024735 @default.
- W2167702473 hasLocation W21677024736 @default.
- W2167702473 hasLocation W21677024737 @default.
- W2167702473 hasOpenAccess W2167702473 @default.